Exhibit I.B.3
HHS Applicable Building Projects
Exhibit I.B.3
HHS Applicable Building Projects

<table>
<thead>
<tr>
<th>CONSTRUCTION</th>
<th>DEFINITIONS</th>
<th>REQUIREMENTS</th>
<th>APPLICATIONS</th>
<th>MANDATORY GOALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>All HHS projects meeting the definition of "construction" in the HHS Facilities Manual</td>
<td>New buildings</td>
<td>Must meet all MOU requirements</td>
<td>All new capital project starts not previously submitted to OMB, FY 2007 and forward</td>
<td>Integrated Design including Integrated Project Team (IPT), performance goals and Life Cycle Cost analysis</td>
</tr>
<tr>
<td>Additions</td>
<td>Additions</td>
<td>$10M or more: must be certified through a third party certification system by an ANSI-accredited organization</td>
<td></td>
<td>Commissioning</td>
</tr>
<tr>
<td>Build-to-Lease: any building (not owned by HHS) built to HHS requirements or specifications</td>
<td>Build-to-Lease: any building (not owned by HHS) built to HHS requirements or specifications</td>
<td></td>
<td>Energy performance (EPAct 2005, EO 13423 and EISA 2007)</td>
<td></td>
</tr>
<tr>
<td>New housing projects</td>
<td>New housing projects</td>
<td></td>
<td>Water conservation (EO 13423 and EISA 2007)</td>
<td></td>
</tr>
</tbody>
</table>

LEASES
Leased space of 5,000 or more usable square feet

Leases that have received a third party certification at any point can claim compliance with the guiding principles.

<table>
<thead>
<tr>
<th>LEASES</th>
<th>DEFINITIONS</th>
<th>REQUIREMENTS</th>
<th>APPLICATIONS</th>
<th>MANDATORY GOALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSA buildings (federally-owned), with Occupancy Agreements</td>
<td>GSA buildings (federally-owned), with Occupancy Agreements</td>
<td>Monitor GSA-identified MOU and certification requirements:</td>
<td>All lease actions initiated in FY 2008 and forward, with approved Business Case</td>
<td>IPT</td>
</tr>
<tr>
<td>Leased space of 5,000 or more usable square feet</td>
<td>Leased space of 5,000 or more usable square feet</td>
<td>- Include sustainability in SFO</td>
<td></td>
<td>Energy performance (EPAct 2005, EO 13423 and EISA 2007)</td>
</tr>
<tr>
<td>Leases that have received a third party certification at any point can claim compliance with the guiding principles.</td>
<td>Leases that have received a third party certification at any point can claim compliance with the guiding principles.</td>
<td>- Include sustainability in POR</td>
<td></td>
<td>Water conservation (EO 13423 and EISA 2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Include sustainability in Award Factors</td>
<td></td>
<td>Ventilation & Thermal Comfort</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For Delegated Buildings, ensure that MOU is incorporated to the maximum extent feasible in the O&M</td>
<td></td>
<td>Moisture control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low-emitting materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indoor air quality during construction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Recycled content</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Biobased content</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Construction waste</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ozone depleting compounds</td>
</tr>
<tr>
<td>DEFINITIONS</td>
<td>REQUIREMENTS</td>
<td>APPLICATIONS</td>
<td>MANDATORY GOALS</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------</td>
<td></td>
</tr>
</tbody>
</table>
| GSA leased (not federally-owned), with Occupancy Agreements | Monitor GSA incorporation of MOU requirements:
 - Include sustainability in SFO
 - Include sustainability in POR
 Include sustainability in Award Factors | All new projects initiated in FY 2007 and forward, which did not have an approved FPAA as of March 2007. | • IPT
 • Energy performance (EPAct 2005, EO 13423 and EISA 2007)
 • Water conservation plan
 • Ventilation & Thermal Comfort
 • Moisture control
 • Low-emitting materials
 • Indoor air quality during construction
 • Recycled content
 • Biobased content
 • Construction waste
 • Ozone depleting compounds |
| Direct leases | Must meet MOU to maximum extent feasible:
 - Include sustainability in SFO
 - Include sustainability in POR
 Include sustainability in Award Factors | | • IPT
 • Energy performance (EPAct 2005, EO 13423 and EISA 2007)
 • Water conservation plan
 • Ventilation & Thermal Comfort
 • Moisture control
 • Low-emitting materials
 • Indoor air quality during construction
 • Recycled content
 • Biobased content
 • Construction waste
 • Ozone depleting compounds |
| EXISTING BUILDINGS EXCEPT HOUSING | Improvements, Repair and Maintenance projects (as defined in the HHS Facilities Program Manual) | Must meet the MOU to the maximum extent feasible.
 Improvement projects $10 million and/or impacting 40% of the overall floor area must be certified through a third party certification system by an ANSI-accredited organization | | • IPT
 • Energy performance (EPAct 2005, EO 13423 and EISA 2007)
 • Water conservation (EO 13423 and EISA 2007)
 • Ventilation & Thermal Comfort
 • Moisture control
 • IAQ during construction
 • Recycled content |
Exhibit I.B.3
HHS Applicable Building Projects

<table>
<thead>
<tr>
<th>DEFINITIONS</th>
<th>REQUIREMENTS</th>
<th>APPLICATIONS</th>
<th>MANDATORY GOALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Biobased content</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Construction waste</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ozone depleting compounds</td>
</tr>
</tbody>
</table>

EXISTING HOUSING
Sustainable building practices will be incorporated as projects are developed.
Meet MOU to the maximum extent feasible.
Projects with a total project value equal to or greater than $10 million and/or impact more than 60% of any individual unit shall also obtain a third party certification of a multi-attribute green building standard or rating system developed by an ANSI-accredited organization.
All new projects initiated in FY 2009 and forward.
- E.O. 13423 and EISA 2007 to maximum extend possible except for the following:
 - If 30% reduction is not feasible, lower reductions may be considered when approved by OFMP. Target reduction shall be targeted at 5% reductions to the maximum achievable.
 - Energy consumption calculations to include space heating, space cooling and domestic water heating.

EXTRAMURAL CONSTRUCTION
Construction projects with a grant award amount of $1M or more
Sustainable design considerations shall be included to the maximum extent feasible. Examples of such design considerations include use of low-impact materials, ensuring energy efficiency, and maximizing reuse/recycling capabilities.
All new grant applications in FY 2009 and forward.
This page intentionally left blank
Exhibit II.A.1
Charter-HHS Owned Facilities
This page intentionally left blank
Exhibit II.A.1
Charter-HHS Owned Facilities

(This is a living document and will be updated as required)

HHS Landholding Operating Division: (NIH, CDC, etc.)
Operating Division’s Component: (occupant/end user)
Location of New Facility: (address)
Project: (Name of project, project number)
Description: (Purpose of Acquisition, i.e., New Program Initiative, New Hires, Support Space, Labs, etc.)
Date: (Date Prepared)
Revised Date: (Date Updated)
Prepared by: (Name/Title)
IPT Lead: (Name/Title)
Construction schedule: (Summarize or attach a schedule)

IPT:
List each team member and their responsibilities; provide contact information to include name, phone, fax, cell phone, e-mail, and mailing address. Team members and their responsibilities may include the following:

- **Project Manager/Project Officer**
 Project Manager/Project Officer (PM/PO) leads IPT. PM/PO is responsible for coordinating all technical requirements including project planning and programming, project management through design and construction, and ensuring incorporation of all polices and guidelines. All design and construction requirements will be directed through the Project Manager to the Contractor unless there contractual change outside the scope, cost or schedule. The PM/PO will communicate regularly with the Contracting Officer to avoid any inadvertent changes to the contract terms.

- **Contracting Officer (CO)**
 Responsible for developing and executing contract instruments, coordinating source selection criteria, ensuring that evaluation plan is adhered to, receiving evaluation plan consensus in order to make an award according to the award factors, ensuring that funds are available, modifying and enforcing the contract, obligating funds on behalf of the government, negotiating on behalf of the government with the Contractor, authorizing on behalf of the government, and approving invoices and committing funds.

- **Occupant/End User Representative(s)**
 Usually Executive Officer or their designee; may also include Finance Officer and/or Administrative Officer.
 Responsible for budgeting, overall program requirements, certifying funds availability and internal budget/finance coordination, and overall program requirements.
Exhibit II.A.1
Charter-HHS Owned Facilities

- **Physical Security**
 Responsible for developing and incorporating physical security requirements that meet the ISC recommendations into the project. Physical security requirements may include shatter-resistant materials, progressive collapse requirements, etc.

- **IT/Telecommunications**
 Responsible for developing data/telephone requirements and coordinating with the construction schedule for cabling rough-in.

- **Environmental Health and Safety (EHS) Specialist**
 Responsible for reviewing compliance with regulations and OPDIV requirements relating to EHS aspects of facility design. The documentation may include, but is not limited to, design drawings; specifications; sampling and analysis data; reports from environmental audits, site assessments and surveys; air and other indoor environmental monitoring data; descriptions of safety and accessibility features; waste management plans; data on water and energy use relating to sustainability; and reports from environmental audits, site assessments and surveys.

- **Sustainability/Green Building Specialist**
 (Preferably LEED™/Green Globes certified.)
 Responsible for coordinating sustainability issues.

- **Operations & Maintenance**
 Responsible for ensuring that the building’s infrastructure is designed and built to ensure overall operability and maintainability. Also a key player in commissioning and ensuring proper systems documentation at project turnover.

- **Procurement Specialist**
 Responsible for coordinating the purchase of services, materials and equipment in support of the project, i.e., fixtures, furnishings, equipment, moving services, etc.

- **Real Property Acquisition Officer**
 Responsible for property acquisition and/or changes to the property.

- **Construction Quality Manager (CQM)**
 Per contract, is responsible for assisting the CO by performing the pre-design, design, procurement, construction phase, and post-construction claims services specified in the CQM contract, and for maintaining working relationship with the architect-engineer and construction contractor(s). The CQM is not responsible for duties of other government contracts listed below, such as architect-engineer or construction contractor(s).

- **Architect-Engineer**
 Responsible for designing the project, and for performing all design-related services in accordance with its government contract.

- **Construction Contractor(s)**
Exhibit II.A.1
Charter-HHS Owned Facilities

Responsible for constructing (means, methods, sequence and procedures used in the construction project), and for related performance in accordance with its government contract.

Communication Plan:
The IPT shall develop a communication plan addressing lines and methods of communications for information, approvals, changes, etc.

- **Formal** is defined as any written agreement or notification that may result in a contractual modification or any changes to scope, budget and schedule. The IPT must review and concur with such modifications and changes. All contractual requirements that affect the POR, schedule, process and cost must have been reviewed by and have signature approval of the Project Officer, Contracting Officer and Contractor.
- **Informal** is defined as the everyday communication and dissemination of information that normally occurs via telephone or email. This should not result in any changes to scope, budget, schedule or process.

Disputes:
The IPT shall develop a process for handling disputes within the IPT.

Risk Management Plan:
The IPT shall identify internal and external factors that require contingency planning or risk analysis and planning, and consider mitigation measures. Examples may include:

- **Schedule**
The IPT shall develop a project schedule and identify potential impacts to timely completion of the project. The construction schedule is made part of the construction contract and will be updated as required and forwarded to appropriate parties.
- **Budget Estimate**
The IPT shall develop a process to track project budget and expenditures.
- **Construction Services**
The method for delivering the space shall be defined. The IPT shall develop specific requirements and timelines for the A/E and Construction Contractor to minimize change orders, delay of the project and cost overruns.
- **Customer Management/Care issues**
Through its communications plan the IPT shall identify and assess how to deal with day-to-day management of the project to ensure involvement of all stakeholders.

Closeout:
The IPT will perform a walkthrough of the substantially completed space and prepare a punch list for the Contractor. The Contracting Officer and/or Project Officer are responsible for acceptance of substantial completion and will consult with Project Manager and include a punch list with the sign off.
Exhibit II.A.2
Charter-Leased Facilities
Exhibit II.A.2
Charter-Leased Facilities

(This is a living document and will be updated as required.)

HHS Operating Division: (NIH, CDC, etc.)
Operating Division’s Component: (occupant/end user)
Location of New Facility: (address)
Lease: (Lease Identification)
Description: (Purpose of Acquisition, i.e., New Program Initiative, New Hires, Support Space, Labs, etc.)
Date: (Date Prepared)
Revised Date: (Date Updated)
Prepared by: (Name/Title)
IPT Lead: (Name/Title)
Lease/Project Milestones: (Summarize or attach a schedule)

IPT:
List each team member and their responsibilities; provide contact information to include name, phone, fax, cell phone, e-mail, and mailing address. Team members and their responsibilities may include the following:

- **Contracting Officer**
 For landholding Agency with Contracting Officers (CO), the CO is the lead, and develops Solicitation for Offer (SFO), and modifies, executes, and enforces the Lease, notwithstanding any other provisions of law.

- **Realty Specialist**
 Lease Administrator to include, but not limited to, preparing obligation document(s); negotiating on behalf of the government with the Lessor, processing invoices, etc. as approved by the Contracting Officer.

- **Project Manager**
 Responsible for representing the Agency in development of technical requirements to include, but not limited to, design and construction as it relates to the Program of Requirements and design documents. Project Manager (PM) will communicate with the Lessor representatives on technical requirements that are within scope, cost Not to Exceed (NTE), schedule and policy. Technical requirements that are outside of the scope, cost, schedule or policy must be approved by the Contracting Officer.

- **Occupant/End User Representative(s)**
 (Usually Executive Officer or their designee.)
 Responsible for commitment of rents throughout the term of the lease and funding all lump sum Government expenses related to the lease, informal communications and overall program requirements.
Exhibit II.A.2
Charter-Leased Facilities

• **Physical Security**
 Responsible for developing security requirements and incorporating them into the POR/SFO. Direct leases will require Security Officer lease concurrence prior to lease execution. Security requirements are per the ISC recommendations and should be identified in Section 9 of the Solicitation for Offer (SFO). Section 9 of the SFO is a template of security requirements requiring the Security Specialist to further define existing or build-to-lease requirements. Lessor will be responsible for coordinating schedule activities with Government vendors.

• **IT/Telecommunications**
 Responsible for developing data/telephone requirements as stated in the SFO, POR or attachment of standards. Lessor will be responsible for coordinating schedule activities with Government vendors.

• **Environmental Health and Safety (EHS) Specialist**
 Responsible for reviewing compliance with regulations and OPDIV requirements relating to EHS aspects of facility designs and facilities offered by lessors. The documentation may include, but is not limited to, design drawings; specifications; sampling and analysis data; reports from environmental audits, site assessments and surveys; air and other indoor environmental monitoring data; descriptions of safety and accessibility features; waste management plans; data on water and energy use relating to sustainability; reports from environmental audits, site assessments and surveys; and offers submitted by lessors.

• **Sustainability/Green Building Specialist**
 (Preferably LEED™/Green Globes certified.)
 Responsible for coordinating sustainability issues.

• **Procurement Specialist**
 Responsible for coordinating the purchase of services, materials and equipment in support of the project, i.e., fixtures, furnishings, equipment, moving services, etc.

• **Construction Quality Manager (CQM)**
 Per contract, is responsible for assisting the PM or COTR in the quality control of the technical requirements to include, but not limited to, design, construction, cost estimating and post construction/occupancy services specified in the CQM Scope of Work (SOW).

• **Lessor**
 Responsible for the performance of the Lease and any subsequent Supplemental Lease Agreements (SLA).

• **Lessor General Contractor(s)**
 As per the SFO, the Lessor is responsible for the performance of construction in accordance with the Lease.

• **Lessor Architect-Engineer**
Exhibit II.A.2
Charter-Leased Facilities

As per the SFO, the Lessor is responsible for the design meeting all requirements under the SFO and local, state and federal codes.

Communication Plan:
The IPT shall develop a communication plan addressing lines and methods of communications for information, approvals, changes, etc.

- **Formal** is defined as any written agreement or notification that may result in a contractual modification or any changes to scope, budget and schedule. The IPT must review and concur with such modifications and changes. All contractual requirements that affect the POR, schedule, process and cost must have been reviewed by and have signature approval of the Contracting Officer and Lessor.
- **Informal** is defined as the everyday communication and dissemination of information that normally occurs via telephone or email. This should not result in any changes to scope, budget, schedule or process.

Disputes:
The IPT shall develop a process for handling disputes within the IPT.

Risk Management Plan:
The IPT shall identify internal and external factors that require contingency planning or risk analysis and planning, and consider mitigation measures. Examples may include:

- **Schedule**
The IPT shall develop a project schedule and identify potential impacts to timely completion of the project. The construction schedule is made part of the Lease and will be updated as required and forwarded to appropriate parties.
- **Budget Estimate**
The IPT shall develop a process to track project budget and expenditures.
- **Construction Services**
The method for delivering the space shall be defined. The IPT shall develop specific requirements and timelines for the Lessor to minimize change orders, delay of the project and cost overruns.
- **Customer Management/Care issues**
Through its communications plan the IPT shall identify and assess how to deal with day-to-day management of the project to ensure involvement of all stakeholders.

Closeout:
The IPT will perform a walkthrough of the substantially completed space and prepare a punch list for the Lessor. The Contracting Officer is responsible for acceptance of substantial completion and will consult with Project Manager and include a punch list with the sign off.
This page intentionally left blank
Exhibit II.B.1
Sustainable Buildings Checklist for Projects
This page intentionally left blank
Exhibit II.B.1
Sustainable Buildings Checklist for Projects
Part 1 – Project Planning

Instructions for use: Part 1 of the checklist shall be completed for each construction, improvements, repair, maintenance, and housing project, as defined in Exhibit I.B.3, Applicable Building Projects, at project planning and included with the initial submission of the Facility Project Approval Agreement (FPAA). Construction projects include new buildings, additions and build-to-lease. The columns titled “Where is it documented?” and “Will the requirement be met?” shall be edited to reflect specific project. Not Applicable (NA) is only relevant to major renovation projects and may be used when project does not impact the specific criteria. For example, commissioning would be required only if systems renovations are part of the project. Each No or NA response requires a written explanation.

| Project Title | Will Project Be Certified? | Rating System
d | Level of Certification |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Same title as reflected on FPAA)</td>
<td>☐ Yes ☐ No</td>
<td>☐ LEED™ ☐ Green Globes™</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandated Requirements</th>
<th>Requirement Definition</th>
<th>Will the requirement be met?</th>
<th>Where is it documented?</th>
<th>How will requirement be met?</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Employ Integrated Design Principles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Project Team (IPT)</td>
<td>Meets Appendix E² definition; same requirement as for leased properties.</td>
<td>☐ Yes ☐ No</td>
<td>Project charter</td>
<td>Description of core group</td>
</tr>
<tr>
<td>Performance Goals</td>
<td>Establishes goals in accordance with MOU³ definition (e.g., energy, water, etc.).</td>
<td>☐ Yes ☐ No</td>
<td>FPAA</td>
<td>IPT list of goals</td>
</tr>
<tr>
<td>Life Cycle Cost Analysis (LCCA)</td>
<td>Performance goals include LCCA meeting MOU definition.</td>
<td>☐ Yes ☐ No</td>
<td>FPAA, LEED™ and/or Green Globes checklist, LCCA</td>
<td>Summary statement of findings</td>
</tr>
<tr>
<td>Commissioning</td>
<td>Identify commissioning practices in accordance with MOU definition.</td>
<td>☐ Yes ☐ No ☐ NA</td>
<td>Commissioning plan</td>
<td>Strategy summary (who, what, when)</td>
</tr>
</tbody>
</table>

II. Optimize Energy Performance

<table>
<thead>
<tr>
<th>Energy Efficiency</th>
<th>Establish whole building energy performance targets in accordance with:</th>
<th>FPAA, LEED™ and/or Green Globes checklist</th>
<th>IPT list of energy goals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- MOU definition</td>
<td>Yes</td>
<td>Na</td>
</tr>
<tr>
<td></td>
<td>- EPAct 2005<sup>4</sup></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>- Executive Order 13423<sup>5</sup></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>- EISA 2007</td>
<td>Yes</td>
<td>NA</td>
</tr>
</tbody>
</table>

Comment: Overall Energy Efficiency

Establish overall energy efficiency targets consistent with the OPDIV’s plan to meet energy efficiency requirements of E.O. 13423 and EISA 2007.

<table>
<thead>
<tr>
<th>Overall Energy Efficiency</th>
<th>Establish overall energy efficiency targets consistent with the OPDIV’s plan to meet energy efficiency requirements of E.O. 13423 and EISA 2007.</th>
<th>FPAA, LEED™ and/or Green Globes checklist</th>
<th>IPT list of energy goals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>Na</td>
</tr>
</tbody>
</table>

Comment:

Measurement and Verification

All utilities shall be metered and a plan for verification is completed consistent with the MOU, EPAct 2005, E.O. 13423, and EISA 2007.

<table>
<thead>
<tr>
<th>Measurement and Verification</th>
<th>All utilities shall be metered and a plan for verification is completed consistent with the MOU, EPAct 2005, E.O. 13423, and EISA 2007</th>
<th>FPAA, LEED™ and/or Green Globes checklist</th>
<th>List of utilities metered, summary of plan for verification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>Na</td>
</tr>
</tbody>
</table>

Comment:

⁴ http://www.energy.gov/about/EPAct.htm
“Strengthening Federal Environmental Energy and Transportation Management”
III. Protect and Conserve Water

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Yes</th>
<th>No</th>
<th>NA</th>
<th>Checklist</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor Water</td>
<td>Establish indoor water conservation targets consistent with MOU guidance.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>FPAA, LEED™ and/or Green Globes checklist</td>
<td></td>
</tr>
<tr>
<td>Outdoor Water</td>
<td>Establish outdoor water conservation targets consistent with MOU guidance, EPAct 2005, and EISA 2007.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>FPAA, LEED™ and/or Green Globes checklist</td>
<td></td>
</tr>
<tr>
<td>Overall Water Conservation</td>
<td>Establish overall water consumption targets consistent with the OPDIV’s plan to meet water conservation requirements of Executive Order 13423.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>FPAA, LEED™ and/or Green Globes checklist</td>
<td></td>
</tr>
</tbody>
</table>
IV. Enhance Indoor Environmental Quality

<table>
<thead>
<tr>
<th>Ventilation & Thermal Comfort</th>
<th>Performance targets are consistent with MOU requirements and EPAct 2005.</th>
<th>Yes</th>
<th>No</th>
<th>NA</th>
<th>LEED™ and/or Green Globes checklist</th>
<th>Summary statement, i.e., standard design guide requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Control</td>
<td>Establish moisture control strategy in accordance with MOU definition.</td>
<td>Yes</td>
<td>No</td>
<td>NA</td>
<td>LEED™ and/or Green Globes checklist</td>
<td>Summary of strategy</td>
</tr>
<tr>
<td>Comment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daylighting</td>
<td>Performance targets are consistent with MOU and EPAct 2005 requirements.</td>
<td>Yes</td>
<td>No</td>
<td>NA</td>
<td>LEED™ and/or Green Globes checklist</td>
<td>Summary statement, i.e., standard design guide requirement</td>
</tr>
<tr>
<td>Comment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-emitting Materials</td>
<td>Establish targets and select certification systems for use of low-emitting materials and products in accordance with MOU definition.</td>
<td>Yes</td>
<td>No</td>
<td>NA</td>
<td>Standard design guides, project specific requirements, FPAA, LEED™ and/or Green Globes checklist</td>
<td>IPT list of low-emitting materials targets including specific certification system(s)</td>
</tr>
<tr>
<td>Comment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protect Indoor Air Quality during Construction</td>
<td>Performance targets are consistent with MOU requirements.</td>
<td>Yes</td>
<td>No</td>
<td>Standard design guidelines for project specific requirements as reflected in FPAA, Contractor’s Health and Safety Plan, Green Globes and/or LEED™ checklist</td>
<td>IPT verifies standard protective measures are adequate and/or any unusual requirements, i.e., occupancy, asbestos, etc.</td>
<td></td>
</tr>
</tbody>
</table>

Comment:

Department of Health and Human Services
Sustainable Buildings Implementation Plan
V. Reduce Environmental Impact of Materials

<table>
<thead>
<tr>
<th>Recycled Content</th>
<th>Establish targets for use of products with recycled content that meet or exceed the minimum requirements in accordance with the MOU definition.</th>
<th>Yes</th>
<th>No</th>
<th>NA</th>
<th>Standard design guides, FPAA, LEED™ and/or Green Globes checklist</th>
<th>IPT list of targets such as percent of materials/products with recycled content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biobased Content</td>
<td>Establish targets for use of products with biobased content in accordance with the MOU definition.</td>
<td>Yes</td>
<td>No</td>
<td>NA</td>
<td>Standard design guides, FPAA, LEED™ and/or Green Globes checklist</td>
<td>IPT list of targets based on availability for the specific project</td>
</tr>
<tr>
<td>Construction Waste</td>
<td>Performance targets are consistent with MOU requirements.</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td>Standard design guides, FPAA, LEED™ and/or Green Globes checklist</td>
<td>IPT list of construction waste targets</td>
</tr>
<tr>
<td>Ozone Depleting Compounds</td>
<td>Insure no ozone depleting compounds are used during or after construction or operations of facilities</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td>Standard design guides, LEED™ and/or Green Globes checklist</td>
<td>IPT verifies and documents – Review MSDS to insure no use of ozone depleting compounds</td>
</tr>
</tbody>
</table>

Comment:
<table>
<thead>
<tr>
<th>National Environmental Policy Act (NEPA)</th>
<th>Project complies with NEPA requirements and implements mitigation measures</th>
<th>Yes</th>
<th>No</th>
<th>NEPA and project design documents</th>
<th>IPT ensures compliance with process specified in OPDIV’s NEPA Implementation Guidance Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Environmental Regulations</td>
<td>Project is reviewed for applicable Federal, state and local environmental regulations.</td>
<td>Yes</td>
<td>No</td>
<td>POR, PJD, PDS, FPAA</td>
<td>IPT reviews applicable regulations with environmental compliance official and ensures required permits and licenses are obtained</td>
</tr>
<tr>
<td>Environmental Baseline Survey</td>
<td>Project site and affected facilities have been assessed for contamination and other environmental risks.</td>
<td>Yes</td>
<td>No</td>
<td>Environmental Baseline Survey Report</td>
<td>IPT ensures completion of an environmental baseline survey</td>
</tr>
<tr>
<td>Environmental Management System</td>
<td>Project meets specific goals and targets, management controls and reporting requirements established by the facility-level EMS</td>
<td>Yes</td>
<td>No</td>
<td>EMS Environmental Management Plans and audit reports</td>
<td>IPT reviews applicable EMS Environmental Management Plans and ensures implementation of management controls and reporting requirements</td>
</tr>
<tr>
<td>Asset Management Planning</td>
<td>Project is coordinated with Real Property Asset Management Plan (RAMP)</td>
<td>Yes</td>
<td>No</td>
<td>FPAA, Real Property Asset Management Plan and Design Documents</td>
<td>IPT reviews RAMP requirements and ensures design compliance</td>
</tr>
</tbody>
</table>
Exhibit II.B.1
Sustainable Buildings Checklist for Projects
Part 2 – Project Completion

Instructions for use: Part 2 of the checklist shall be completed for each construction, improvements, repair, maintenance and housing project, as defined in Exhibit I.B.3, Applicable Buildings Projects, at project completion and after commissioning when the building is functionally operational. Construction projects include new buildings, additions and build-to-lease. The columns titled “Where is it documented?” and “How was requirement met?” shall be edited to reflect specific project. Not Applicable (NA) is only relevant to major renovation projects and may be used when project does not impact the specific criteria. For example, commissioning would be required only if systems renovations are part of the project. Each No or NA response and each target not met requires a written explanation.

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Is Project Certified?</th>
<th>Rating System</th>
<th>Level of Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Same title as reflected on FPAA)</td>
<td>☐ Yes ☐ No</td>
<td>☐ LEED™ ☐ Green Globes™</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandated Requirements</th>
<th>Requirement Definition</th>
<th>Is the requirement met?</th>
<th>Where is it documented?</th>
<th>How was requirement met?</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Employ Integrated Design Principles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Project Team (IPT)</td>
<td>Meets Appendix E² definition; same requirement as for leased properties.</td>
<td>☐ Yes ☐ No</td>
<td>Project charter</td>
<td>Description of core group</td>
</tr>
<tr>
<td>Performance Goals</td>
<td>Establishes goals in accordance with MOU³ definition (e.g., energy, water, etc.).</td>
<td>☐ Yes ☐ No</td>
<td>FPAA</td>
<td>IPT list of goals</td>
</tr>
<tr>
<td>Life Cycle Cost Analysis (LCCA)</td>
<td>Performance goals include LCCA meeting MOU definition.</td>
<td>☐ Yes ☐ No</td>
<td>FPAA, LEED™ and/or Green Globes checklist, LCCA</td>
<td>Summary statement of findings</td>
</tr>
<tr>
<td>Commissioning</td>
<td>Identify commissioning practices in accordance with MOU definition.</td>
<td>☐ Yes ☐ No ☐ NA</td>
<td>Commissioning plan</td>
<td>Strategy summary (who, what, when)</td>
</tr>
</tbody>
</table>

2 Department of Health and Human Services Sustainable Buildings Implementation Plan, Appendix E: Integrated Project Team Definition & Charter

Department of Health and Human Services
Sustainable Buildings Implementation Plan

1 December 31, 2008
II. Optimize Energy Performance

<table>
<thead>
<tr>
<th>Energy Efficiency</th>
<th>Establish whole building energy performance targets in accordance with:</th>
<th>FPAA, LEED™ and/or Green Globes checklist</th>
<th>IPT list of energy goals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• MOU definition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EPAct 2005[^4]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Executive Order 13423[^5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EISA 2007</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOU definition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPAct 2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Executive Order 13423[^5]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EISA 2007</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment:

<table>
<thead>
<tr>
<th>Overall Energy Efficiency</th>
<th>Establish overall energy efficiency targets consistent with the OPDIV’s plan to meet energy efficiency requirements of Executive Order 13423 and EISA 2007.</th>
<th>FPAA, LEED™ and/or Green Globes checklist</th>
<th>IPT list of energy goals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ Yes □ No □ NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment:

<table>
<thead>
<tr>
<th>Measurement and Verification</th>
<th>All utilities shall be metered and a plan for verification is completed consistent with the MOU, EPAct 2005 and EISA 2007.</th>
<th>LEED™ and/or Green Globes checklist</th>
<th>List of utilities metered, summary of plan for verification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ Yes □ No □ NA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comment:

[^4]: http://www.energy.gov/about/EPAct.htm

III. Protect and Conserve Water

<table>
<thead>
<tr>
<th>Indoor Water</th>
<th>Establish indoor water conservation targets consistent with MOU guidance, EPAct 2005 and EISA 2007.</th>
<th>□ Yes □ No □ NA</th>
<th>FPAA, LEED™ and/or Green Globes checklist</th>
<th>IPT list of water conservation targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Water</td>
<td>Establish outdoor water conservation targets consistent with MOU guidance, EPAct 2005 and EISA 2007.</td>
<td>□ Yes □ No □ NA</td>
<td>FPAA, LEED™ and/or Green Globes checklist</td>
<td>IPT list of water conservation targets</td>
</tr>
<tr>
<td>Overall Water Conservation</td>
<td>Establish overall water consumption targets consistent with the OPDIV’s plan to meet water conservation requirements of Executive Order 13423.</td>
<td>□ Yes □ No □ NA</td>
<td>FPAA, LEED™ and/or Green Globes checklist</td>
<td>IPT list of water conservation targets</td>
</tr>
</tbody>
</table>

Comment:
IV. Enhance Indoor Environmental Quality

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilation & Thermal Comfort</td>
<td>Performance targets are consistent with MOU requirements and EPAct 2005.</td>
<td>Yes [] No [] NA []</td>
<td>LEED™ and/or Green Globes checklist []</td>
<td>Summary statement, i.e., standard design guide requirement []</td>
</tr>
<tr>
<td>Comment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Control</td>
<td>Establish moisture control strategy in accordance with MOU definition.</td>
<td>Yes [] No [] NA []</td>
<td>LEED™ and/or Green Globes checklist []</td>
<td>Summary of strategy []</td>
</tr>
<tr>
<td>Comment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daylighting</td>
<td>Performance targets are consistent with MOU and EPAct 2005 requirements.</td>
<td>Yes [] No [] NA []</td>
<td>LEED™ and/or Green Globes checklist []</td>
<td>Summary statement, i.e., standard design guide requirement []</td>
</tr>
<tr>
<td>Comment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-emitting Materials</td>
<td>Establish targets and select certification systems for use of low-emitting materials and products in accordance with MOU definition.</td>
<td>Yes [] No [] NA []</td>
<td>Standard design guides, project specific requirements, FPAA, LEED™ and/or Green Globes checklist []</td>
<td>IPT list of low-emitting materials targets including specific certification system(s) []</td>
</tr>
<tr>
<td>Comment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protect Indoor Air Quality during Construction</td>
<td>Performance targets are consistent with MOU requirements.</td>
<td>Yes [] No []</td>
<td>Standard design guidelines for project specific requirements as reflected in FPAA, Contractor’s Health and Safety Plan, Green Globes and/or LEED™ checklist []</td>
<td>IPT verifies standard protective measures are adequate and/or any unusual requirements, i.e., occupancy, asbestos, etc. []</td>
</tr>
<tr>
<td>Comment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
V. Reduce Environmental Impact of Materials

<table>
<thead>
<tr>
<th>Recycled Content</th>
<th>Establish targets for use of products with recycled content that meet or exceed the minimum requirements in accordance with the MOU definition.</th>
<th>□ Yes □ No □ NA</th>
<th>Standard design guides, FPAA, LEED™ and/or Green Globes checklist</th>
<th>IPT list of targets such as percent of materials/products with recycled content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biobased Content</td>
<td>Establish targets for use of products with biobased content in accordance with the MOU definition.</td>
<td>□ Yes □ No □ NA</td>
<td>Standard design guides, FPAA, LEED™ and/or Green Globes checklist</td>
<td>IPT list of targets based on availability for the specific project</td>
</tr>
<tr>
<td>Construction Waste</td>
<td>Performance targets are consistent with MOU requirements.</td>
<td>□ Yes □ No</td>
<td>Standard design guides, FPAA, LEED™ and/or Green Globes checklist</td>
<td>IPT list of construction waste targets</td>
</tr>
<tr>
<td>Ozone Depleting Compounds</td>
<td>Insure no ozone depleting compounds are used during or after construction or operations of facilities</td>
<td>□ Yes □ No</td>
<td>Standard design guides, LEED™ and/or Green Globes checklist</td>
<td>IPT verifies and documents – Review MSDS to insure no use of ozone depleting compounds</td>
</tr>
</tbody>
</table>

Comment:
VI. Conformance with Local Environmental Requirements

<table>
<thead>
<tr>
<th>National Environmental Policy Act (NEPA)</th>
<th>Project complies with NEPA requirements and implements mitigation measures</th>
<th>□ Yes □ No</th>
<th>NEPA and project design documents</th>
<th>IPT ensures compliance with process specified in OPDIV’s NEPA Implementation Guidance Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Environmental Regulations</td>
<td>Project is reviewed for applicable Federal, state and local environmental regulations.</td>
<td>□ Yes □ No</td>
<td>POR, PJD, PDS, FPAA</td>
<td>IPT reviews applicable regulations with environmental compliance official and ensures required permits and licenses are obtained</td>
</tr>
<tr>
<td>Environmental Baseline Survey</td>
<td>Project site and affected facilities have been assessed for contamination and other environmental risks.</td>
<td>□ Yes □ No □ NA</td>
<td>Environmental Baseline Survey Report</td>
<td>IPT ensures completion of an environmental baseline survey</td>
</tr>
<tr>
<td>Environmental Management System</td>
<td>Project meets specific goals and targets, management controls and reporting requirements established by the facility-level EMS</td>
<td>□ Yes □ No □ NA</td>
<td>EMS Environmental Management Plans and audit reports</td>
<td>IPT reviews applicable EMS Environmental Management Plans and ensures implementation of management controls and reporting requirements</td>
</tr>
<tr>
<td>Asset Management Planning</td>
<td>Project is coordinated with Real Property Asset Management Plan (RAMP)</td>
<td>□ Yes □ No □ NA</td>
<td>FPAA, Real Property Asset Management Plan and Design Documents</td>
<td>IPT reviews RAMP requirements and ensures design compliance</td>
</tr>
</tbody>
</table>

Comment:

Department of Health and Human Services
Sustainable Buildings Implementation Plan

December 31, 2008
Exhibit II.B.2
Sustainable Buildings Checklist for Lease Actions
Exhibit II.B.2
Sustainable Buildings Checklist for Lease Actions

<table>
<thead>
<tr>
<th>OPDIV</th>
<th>Type of Lease Action</th>
<th>Size (USF)</th>
<th>ARIS File ID: GSA Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ Continued Occupancy □ Expansion □ New Requirement □ Replacement</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Is Leased Space Certified?</th>
<th>Rating System</th>
<th>Certification Level/Type</th>
<th>Registration Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Yes □ No</td>
<td>□ LEED™ □ GreenGlobes™</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Location Address

Note: If the Leased Space has achieved a certification that meets the requirements of a multi-attribute green building standard developed by an ANSI-accredited organization do not complete the rest of the form. Fill out the certification information above and return the document to OFMP.

Mandated Requirements

I. Employ Integrated Design Principles

Integrated Project Team (IPT) Initiate and maintain an integrated project team in all stages of a project’s planning and delivery.

- Yes □ No

Comment:

Commissioning Employ commissioning practices tailored to the size and complexity of the building and its system components.

- Yes □ No
- NA

Comment:

II. Optimize Energy Performance

Energy Efficiency Establish a whole building performance target that takes into account the intended use, occupancy, operations, plug loads, other energy demands, and design to earn the ENERGY STAR® rating for the building.

- Yes □ No
- NA

Comments:

Measurement and Verification Building has building level utility meters to track and continuously optimize performance.

- Yes □ No
- NA

Comments:

III. Protect and Conserve Water

Indoor Water Employ strategies that in aggregate use a minimum of 20 percent less potable water than the indoor water use baseline calculated for the building.

- Yes □ No
- NA

Comments:

Outdoor Water Use water efficient landscape and irrigation strategies, including water reuse and recycling, to reduce outdoor potable water consumption by a minimum of 50 percent over that consumed by conventional means (plant species and plant densities).

- Yes □ No
- NA

Comments:

Process Water When potable water is used to improve a building’s energy efficiency, deploy life-cycle cost effective water conservation measures.

- Yes □ No
- NA

Comments:

Water Efficient Products Use EPA’s WaterSense Program-labeled products or other water conserving products.

- Yes □ No
- NA

Comments:
IV. Enhance Indoor Environmental Quality

Ventilation & Thermal Comfort Meet ASHRAE standards for thermal and ventilation conditions, including continuous humidity control for indoor environmental and air quality for the building.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Comments:

Moisture Control Establish and implement a moisture control strategy for controlling moisture flows and condensation to prevent building damage and mold contamination.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Comments:

Daylighting Achieve a minimum of daylight factor of 2 percent in 75 percent of all space occupied for critical visual tasks or have automatic dimming controls or accessible manual lighting controls, and appropriate glare control.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Comments:

Low-emitting Materials Use materials and products in building operations with low pollutant emissions, including adhesives, sealants, paints, carpet systems, and furnishings.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Comments:

Protect Indoor Air Quality Building has undergone a flush-out to minimize exposure to contaminants from new building materials installed before lease occupation. Smoking is prohibited within the building and within 25 feet of all building main entrances and building ventilation intakes during building occupancy.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Comments:

V. Reduce Environmental Impact of Materials

Recycled Content Use products meeting or exceeding EPA's recycled content recommendations.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Comments:

Biobased Content For USDA-designated products, use products meeting or exceeding USDA's biobased content recommendations.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Comments:

Environmental Preferred Products Use products, such as low-emitting materials or products containing no toxic metals, that have a lesser or reduced effect on human health and the environment when compared with competing products or services that serve the same purpose.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Comments:

Waste and Materials Management Provide reuse and recycling services for the building occupants, where markets or on-site recycling exist.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Comments:

Ozone Depleting Compounds Eliminate the use of ozone depleting compounds where alternative environmentally preferable products are available.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Comments:

VI. Conformance with local Environmental Requirements

National Environmental Policy Act (NEPA) Assess the building and site for contamination and any other potential environmental risks.

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Comments:
Exhibit II.B.2
Sustainable Buildings Checklist for Lease Actions
Instructions

Exhibit II.B.2 is for the collection and recording of sustainable actions achieved on leased properties. The checklist is not intended to be used during the solicitation process but to record the sustainable features of a building after occupancy. The tool is designed to measure the Department’s achievement in meeting the Guiding Principles as described in Executive Order 13423\(^1\) and the Energy Independence and Security Act of 2007 (EISA)\(^2\). The six building attributes that are identified for reporting compliance are:

- Employ Integrated Design Principles
- Optimize Energy Performance
- Protect and Conserve Water
- Enhance Indoor Environmental Quality
- Reduce Environmental Impact of Materials
- Conformance with Local Environmental Requirements

Leases that have received a third party certification at any point can claim compliance with the Guiding Principles. Compliance can be demonstrated by achieving the certification that meets the requirements of a multi-attribute green building standard developed by an ANSI-accredited organization.

Applicability

Exhibit II.B.2 is required for any lease action over 5,000 usable square feet (USF) that is not a build-to-suit lease. (Build-to-suit leases are treated as new construction.) In cases where a Supplemental Lease Agreement (SLA) acquires expansion space and the newly acquired expansion space exceeds 5000 USF, a checklist must be submitted for the newly acquired space only. In cases where a SLA obtains expansion space on an existing lease but the expansion is not greater than 5,000 USF, a checklist does not need to be submitted even if the total square footage exceeds 5,000 USF. Exercising a lease option for space over 5,000 USF requires the submission of the checklist.

The checklist is required to be completed no later than 60 days after lease award. The first step in completing the checklist is to determine if the leased space has obtained a certification. If the leased asset has received third party (i.e., LEED™ or GreenGlobes™) certification, the first section of the checklist is completed and submitted to OFMP, and no other action is required. If the property is not certified, the entire checklist must be completed.

On leased properties that are Federally-owned buildings, building data and assistance may be obtainable from GSA. On privately held properties difficulties may inhibit the collection of extensive data. In these cases where the collection of the building data cannot be obtained from the lessor or GSA and the OPDIV does not have the expertise to evaluate the sustainable measures on a building, a Letter of Non-Conformance, Exhibit II.B.3., must be submitted in lieu of the checklist.

\(^1\) EO 13423 located at http://www.wbdg.org/ccb/FED/FMEO/ear13423.pdf

Exhibit II.B.2
Sustainable Buildings Checklist for Lease Actions

Instructions

of the Exhibit II.B.2 checklist. The letter will detail the reasons for not submitting the Exhibit II.B.2 checklist.

In May and November of each year, OPDIVs will submit completed Exhibit II.B.2 checklists for every new lease action for the previous six months. OFMP will send out a data call in May and November of each year requesting that the OPDIVs submit all completed Exhibit II.B.2 checklists, and/or Letters of Non-Conformance where applicable.

Instructions

Property Information section:

- Indicate the OPDIV
- Indicate the type of lease action, Continued Occupancy, Expansion, New Requirement or Replacement.
- Indicate the USF of the newly acquired space only. Reference applicability on page 1 for clarification.
- The last box on line requests the ARIS file ID and the GSA number for the leased space.
- On the next row, indicate if the leased space has been certified. The leased space could be part of a certified building or it could be certified as a stand alone space. Check the box that identifies the rating system used, and indicate the level of certification and type. In the case of LEED™, the type may be EB (Existing Building), Commercial Interiors (CI), New Construction (NC) or Core and Shell (CS). In the Green Globes™ rating system, the levels are 1 through 4. Indicate the registration number from the selected certification system.
- Enter the address of the lease in the last row.

Mandated Requirements section:

Use the comment box to show the reason for the “yes”, “no” or “not applicable” answer. The comment box can be used to illustrate accomplishments that contribute to the achievement of the metric but may not meet it completely. Make the responses as simple and direct as possible. It is realized that achieving 100% of the Guiding Principles for an existing building is difficult; however, it is important to record any possible achievements for each metric in the comment box.

Metrics that indicate a “No” or “NA” answer do not necessarily disqualify a building from meeting the Guiding Principles. Buildings that do not meet individual guiding principles may request a waiver from achieving those individual metrics within the Guiding Principles. Waiver requests shall be considered on a case-by-case basis for individual lease actions. A waiver is only applicable in cases where the building is unable to meet individual metrics.

The waiver letter must detail the reasons for not achieving the metrics. An example for a “No” would be a mission requirement that would prohibit the building from achieving daylighting
requirements due to required windowless laboratory spaces. An example for the Outdoor Water metric receiving a “NA” would be for a building or space that has no exterior watering opportunities.

The DAS of OFMP/ASAM must approve waivers and any other exceptions to the provisions of this policy as required by E.O. 13423.

A waiver is not applicable to a leased asset that fails to complete the Sustainability Checklist. Lease actions that fail to complete the Sustainability Checklist must submit the Letter of Non-conformance to OFMP within 60 days of the lease award.

I. Employ Integrated Design Principles

Integrated Project Team
- Identify whether a project team was established in the award or construction of the leased facility.

Commissioning
- Identify whether the building components have been commissioned or retro-commissioned by a designated commissioning agent.

II. Optimize Energy Performance

Energy Efficiency
- Identify whether the building has earned an ENERGY STAR® rating, or if the building’s energy performance has had a 30 percent reduction per the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., (ASHRAE) and the Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007, Energy Standard for Buildings Except Low-Rise Residential.
- If the leased property is laboratory space, Labs21 Laboratory Modeling Guidelines can be used.
- Identify whether the building meets at least 30% of the hot water demand through the installation of solar hot water heaters, per the Energy Independence and Security Act (EISA) Section 523.
- Under Executive Order 13423, implementation of renewable energy generation projects is encouraged. Identify whether the facility has onsite renewable energy systems.
- Does the facility use Energy Star® and FEMP designated energy efficient products where available?

Measurement and Verification
- Per the Energy Policy Act of 2005 (EPAct) Section 103, installation of building level utility meters are required to track and continuously optimize performance. Identify what utility meters are used for the building, including meters for natural gas and steam.
- Has actual performance data been compared to the design target after one year of occupancy?

3 http://www.energystar.gov/
4 http://www.labs21century.gov/
5 http://www.eere.energy.gov/femp/
Exhibit II.B.2
Sustainable Buildings Checklist for Lease Actions

Instructions

- Indicate whether the building is currently without meters and if the leased space has separate meters.

III. Protect and Conserve Water

Indoor Water
- Does the building employ strategies that (in aggregate) use a minimum of 20 percent less potable water than the indoor water use baseline calculated for the building, after meeting the EPAct 1992, Uniform Plumbing Codes 2006, and the International Plumbing Codes 2006 fixture performance requirements? Note the installation of water meters, which is encouraged to allow for the management of water use during occupancy.

Outdoor Water
- Are water-efficient landscape and irrigation strategies used, including water reuse and recycling, that reduce outdoor potable water consumption by a minimum of 50 percent over that consumed by conventional means (such as plant species and plant densities)?
- Does the building have water meters that measure outdoor water use?

Process Water
- Does the building deploy life-cycle cost effective water conservation measures when potable water is used to improve the building’s energy efficiency, according to the Energy Policy Act of 2005, Section 109?

Water-Efficient Products
- Does the building employ the use of EPA’s WaterSense Program-labeled products, FEMP designated, or other water conserving products?
- If the building has employed an Irrigation Contractor, is the company certified through EPA’s WaterSense Program?

IV. Enhance Indoor Environmental Quality

Ventilation and Thermal Comfort

Moisture Control
- Does the building have an established and implemented moisture control strategy for controlling moisture flows and condensation to prevent building damage and mold contamination?

Day lighting
- Does the building provide automatic dimming controls or accessible manual lighting controls, and have appropriate glare control?

Low-Emitting Materials
- Does the building employ a strategy to obtain materials and products with low pollutant emissions, including adhesives, sealants, paints, carpet systems, and furnishings?

6 http://www.epa.gov/owm/water-efficiency/
Exhibit II.B.2
Sustainable Buildings Checklist for Lease Actions
Instructions

Protect Indoor Air Quality
- Does the building follow the recommended approach of the Sheet Metal and Air Conditioning Contractor's National Association Indoor Air Quality Guidelines for Occupied Buildings under Construction, 1995?
- Will the building be air flushed prior to occupancy?
- Are there regulations in place for the interior and exterior of the building that prohibit or restrict smoking?

V. Reduce Environmental Impact of Materials
Recycled Content
- Does the building use EPA-designated products that meet or exceed EPA's recycled content recommendations?
- Are EPA-designated products purchased for construction, operation, maintenance of or use in the building?

Biobased Content
- Is the use of USDA-designated products included in all solicitations for construction, operation, maintenance of or use in the building?

Environmentally Preferred Products
- Does the building employ the use of products, such as low-emitting materials or products containing no toxic metals, that have a lesser or reduced effect on human health and the environment over competing products or services that serve the same purpose but are not as environmentally friendly?

Waste and Materials Management
- Does the building employ a waste, salvage, or recycling program for the collection and disposal of used materials?

Ozone Depleting Compounds
- Does the building employ a strategy to limit or eliminate the use of ozone depleting compounds?

VI. Conformance with Local Environmental Requirements
National Environmental Policy Act (NEPA)
- Does the facility conform to Federal, state and local environmental regulations in regard to contamination and other environmental risks?
This page intentionally left blank
Exhibit II.B.3
Letter of Non-conformance
This page intentionally left blank
Exhibit II.B.3
Letter of Non-conformance

TO: Howard D. Kelsey
Deputy Assistant Secretary
Office for Facilities Management and Policy (OFMP)

FROM: [Name], Facility Director
[OPDIV]

SUBJECT: Statement of Non-Conformance for the Completion of Exhibit II.B.2, Sustainable Buildings Checklist for Lease Actions

Lease Description Describe the lease transaction and building particulars.

Include the building location, size and type of lease action.

Exhibit II.B.2 Completion The Letter of Non-Conformance is submitted in lieu of the Sustainable Buildings Checklist.

Describe the effort of the OPDIV in attempting to have the checklist completed.

Detail how the OPDIV supplied the checklist and to whom.

Reason for Non-Conformance Describe the reason the Sustainable Buildings Checklist was not completed and submitted.

Discuss if GSA was requested to provide assistance on a Federally-owned building but did not respond to the OPDIV request.

Detail the response from the Lessor if they were asked to support the collection of the data and would not without a required fee for completing or providing information for the checklist.

Discuss if the OPDIV did not attempt to complete the checklist due to their lack of expertise to evaluate the sustainable measures on a building.
This page intentionally left blank
Exhibit II.C.1
Existing Building Assessment Tool
Exhibit II.C.1
Existing Building Assessment Tool

<table>
<thead>
<tr>
<th>Building Attribute</th>
<th>Attribute Definition</th>
<th>Building Condition Scoring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Energy Performance</td>
<td>Establish a whole building performance target that takes into account the intended use, occupancy, operations, and other energy demands. Establish a baseline building performance rating per the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., (ASHRAE) and the Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007, Energy Standard for Buildings Except Low-Rise Residential Buildings. Reduce Energy Usage Intensity (EUI) by 20% below 2003 baseline, or receive a score of 75 or higher.</td>
<td>Establish an energy usage baseline using historic data (2003 EUI) OR Establish an energy usage baseline using ASHRAE/IESNA 90.1-2007 OR Evaluate using Energy Star Portfolio Manager</td>
</tr>
</tbody>
</table>

The Assessment Report should include a comprehensive list of the building’s strengths, weaknesses and deficiencies; a prioritized list of deficiencies that can be addressed by minor alterations or repairs (considering payback over the life cycle); and a status summary indicating whether a major renovation or replacement of the facility (and estimated time frame) is recommended by the assessment team.
Exhibit II.C.1
Existing Building Assessment Tool

<table>
<thead>
<tr>
<th>Building Attribute</th>
<th>Attribute Definition</th>
<th>Building Condition Scoring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>higher in Energy Star Portfolio Manager (ESPM).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement & Verification</td>
<td>Building level metering installed for electricity, and where required by OPDIV energy plan advanced metering</td>
<td>5 10 15 25 30 40</td>
</tr>
<tr>
<td></td>
<td>Electrical meter performance data collected, compiled and used to evaluate Energy Projects</td>
<td>5 10 15 25 30 40</td>
</tr>
<tr>
<td></td>
<td>Building level metering installed for utilities defined in EO 13423, EPAct 2005 and EISA 2007, and where required by OPDIV energy plan advanced metering</td>
<td>5 10 15 25 30 40</td>
</tr>
<tr>
<td></td>
<td>All utility meter performance data collected compiled and used to evaluate Energy Projects performance.</td>
<td>5 10 15 25 30 40</td>
</tr>
<tr>
<td></td>
<td>Data entered in Energy Star Portfolio Manager</td>
<td>5 10 15 25 30 40</td>
</tr>
<tr>
<td></td>
<td>Data entered in High Performance Buildings Database</td>
<td>5 10 15 25 30 40</td>
</tr>
<tr>
<td>Renewable Energy (Bonus)</td>
<td>No renewable energy purchased (consumed) & no on site generation.</td>
<td>0 5 10 15 25 30</td>
</tr>
<tr>
<td></td>
<td>Less than 3% of Renewable Energy (thermal, mechanical or electrical) is purchased for use in the facility.</td>
<td>0 5 10 15 25 30</td>
</tr>
<tr>
<td></td>
<td>3% or more of Renewable Energy (thermal, mechanical or electrical) is purchased for use in the facility</td>
<td>0 5 10 15 25 30</td>
</tr>
<tr>
<td></td>
<td>3% or more electricity consumed is from renewable sources and 1.5 % is from new sources (online after Jan 1, 1999)</td>
<td>0 5 10 15 25 30</td>
</tr>
<tr>
<td></td>
<td>Implemented cost effective on site renewable energy generation projects.</td>
<td>0 5 10 15 25 30</td>
</tr>
<tr>
<td></td>
<td>3% or more electricity consumed is from renewable sources and 1.5 % is from new sources (online after Jan 1, 1999) and Implemented cost effective on site renewable energy generation projects.</td>
<td>0 5 10 15 25 30</td>
</tr>
<tr>
<td>B. Protect & Conserve Water</td>
<td>Indoor Water Effectiveness of indoor water conservation. The water baseline, for buildings with plumbing fixtures installed in 1994 or later, is 120% of the Uniform Plumbing Codes 2006 or the International Plumbing Codes of 32006 fixture performance requirements. The water baseline for plumbing fixtures older than 1994</td>
<td>5 10 20 30 40</td>
</tr>
<tr>
<td></td>
<td>FY2007 water use intensity (WUI) established along with a water management plan. Procedures in place for following the indoor best management practices as developed by FEMP ¹</td>
<td>5 10 20 30 40</td>
</tr>
<tr>
<td></td>
<td>Building level water meter installed or estimated annual water use baseline developed for the building.</td>
<td>5 10 20 30 40</td>
</tr>
<tr>
<td></td>
<td>Employ strategies that in aggregate use a minimum of 10% less potable water than the indoor water use baseline</td>
<td>5 10 20 30 40</td>
</tr>
<tr>
<td></td>
<td>Employ strategies that in aggregate use a minimum of 15% less potable water than the indoor water use baseline</td>
<td>5 10 20 30 40</td>
</tr>
<tr>
<td></td>
<td>Employ strategies that in aggregate use a minimum of 20% less potable water than the indoor water use OR 20% reduction in measured potable water use compared to building use in 2003 or a year thereafter with water quality data.</td>
<td>5 10 20 30 40</td>
</tr>
</tbody>
</table>

¹ Sustainable Buildings Implementation Plan

Department of Health and Human Services Sustainable Buildings Implementation Plan

December 31, 2008
Exhibit II.C.1
Existing Building Assessment Tool

<table>
<thead>
<tr>
<th>Building Attribute</th>
<th>Attribute Definition</th>
<th>Building Condition Scoring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Attribute</td>
<td>Attribute Definition</td>
<td>5</td>
</tr>
<tr>
<td>Outdoor Water</td>
<td>Effectiveness of outdoor water conservation</td>
<td>Uses water efficient landscape and irrigation strategies, including water reuse and recycling, to reduce outdoor potable water consumption by a minimum of 40% over that consumed by conventional means (plant species and plant densities) OR Reduces outdoor potable water consumption by a minimum of 40% compared to measured water use in 2003 or a year thereafter with quality water data</td>
</tr>
<tr>
<td>Process Water</td>
<td>Effectiveness of Process water conservation, where applicable</td>
<td>Cost effective conservation measures are in place to reuse or reclaim water used in increasing energy efficiency, such as cooling towers, boilers, etc.</td>
</tr>
<tr>
<td>Building Attribute</td>
<td>Attribute Definition</td>
<td>Building Condition Scoring Criteria</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Maintain/restore site hydrology (Bonus)</td>
<td>Where redevelopment affects site hydrology, maintain or restore the hydrology of the site with regard to temperature, rate, volume, and duration of flow using site planning, design, construction, and maintenance strategies. (EISA Section 438)</td>
<td>20</td>
</tr>
<tr>
<td>C. Enhance Indoor Environmental Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Comfort Effectiveness of measures to enhance indoor environmental quality for thermal comfort</td>
<td>Building does not meet current ASHRAE Standard 55-2004 Thermal Environmental Conditions for human Occupancy. Complaints from occupants regarding thermal comfort levels are daily.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Building does not meet current ASHRAE Standard 55-2004 Thermal Environmental Conditions for human Occupancy. Complaints from occupants regarding thermal comfort levels are weekly.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Building does not meet current ASHRAE Standard 55-2004 Thermal Environmental Conditions for human Occupancy. Complaints from occupants regarding thermal comfort levels are monthly.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Building does not meet current ASHRAE Standard 55-2004 Thermal Environmental Conditions for human Occupancy. Complaints from occupants regarding thermal comfort levels are rare.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Occupancy survey performed, or thermal comfort parameters have been measured, and meet current ASHRAE Standard 55-2004 Thermal Environmental Conditions for Human Occupancy.</td>
<td>20</td>
</tr>
<tr>
<td>Ventilation Effectiveness of measures to enhance indoor environmental quality for ventilation</td>
<td>Building does not meet current ASHRAE Standard 62.1-2007 Ventilation for Acceptable Indoor Air Quality. Verification of design ventilation rates (testing & balancing) performed within the last 5 years. O&M procedures in place for checking air supply and exhaust systems. Occupant complaints are rare.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Building does not meet current ASHRAE Standard 62.1-2007 Ventilation for Acceptable Indoor Air Quality. Verification of design ventilation rates (testing & balancing) performed within the last 5 years.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Building does not meet current ASHRAE Standard 62.1-2007 Ventilation for Acceptable Indoor Air Quality. Verification of design ventilation rates (testing & balancing) performed within the last 5 years. O&M procedures in place for checking air supply and exhaust systems. Occupant complaints are rare.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Building does not meet current ASHRAE Standard 62.1-2007 Ventilation for Acceptable Indoor Air Quality. Verification of design ventilation rates (testing & balancing) performed within the last 5 years. O&M procedures in place for checking air supply and exhaust systems. Occupant complaints are rare.</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Verification of design ventilation rates performed through recommissioning or retrocommissioning, and meets current ASHRAE Standard 62.1-2007 Ventilation for Acceptable Indoor Air Quality established ranges per climate</td>
<td>20</td>
</tr>
</tbody>
</table>
Exhibit II.C.1

Existing Building Assessment Tool

<table>
<thead>
<tr>
<th>Building Attribute</th>
<th>Attribute Definition</th>
<th>Building Condition Scoring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balancing (not performed)</td>
<td>O&M procedures in place for checking air supply and exhaust systems.</td>
<td>0</td>
</tr>
<tr>
<td>Continued O&M procedures in place for checking air supply and exhaust systems.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Observation of proper functioning of systems.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Balancing performed. O&M procedures in place for checking air supply and exhaust systems.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Balancing performed and systems are balanced.</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Moisture Control

Effectiveness of measures implemented for controlling moisture flows and condensation to prevent building damage and mold contamination

<table>
<thead>
<tr>
<th>Moisture Control</th>
<th>Building Condition Scoring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe moisture and or condensation damage and evidence of mold in the building. No policy in place for monitoring moisture occurrences. No strategy in place for controlling moisture flows and condensation.</td>
<td>0</td>
</tr>
<tr>
<td>Recurring moisture and or condensation problems in various areas in the building. Some evidence of mold in the building. No policy in place for monitoring moisture occurrences. No strategy in place for controlling moisture flows and condensation.</td>
<td>5</td>
</tr>
<tr>
<td>Recurring moisture and or condensation problems in various areas in the building. No evidence of mold in the building. No policy in place for monitoring moisture occurrences. No strategy in place for controlling moisture flows and condensation.</td>
<td>10</td>
</tr>
<tr>
<td>Minor moisture and or condensation occurrences. No policy in place for monitoring moisture occurrences. No strategy in place for controlling moisture flows and condensation.</td>
<td>15</td>
</tr>
<tr>
<td>Established and implemented moisture control strategy for controlling moisture flows and condensation to prevent building damage and mold contamination. All necessary repairs have been completed to remove prior contamination.</td>
<td>20</td>
</tr>
</tbody>
</table>

Daylighting or Lighting Controls

Effectiveness of measures implemented to control lighting or daylighting.

<table>
<thead>
<tr>
<th>Daylighting or Lighting Controls</th>
<th>Building Condition Scoring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>No measures have been implemented.</td>
<td>0</td>
</tr>
<tr>
<td>Accessible lighting controls (e.g., accessible manual lighting controls, glare control and automatic dimming controls) are provided for 10% of regularly occupied building space. OR</td>
<td>5</td>
</tr>
<tr>
<td>Accessible lighting controls (e.g., accessible manual lighting controls, glare control and automatic dimming controls) are provided for 30% of regularly occupied building space, OR</td>
<td>10</td>
</tr>
<tr>
<td>Accessible lighting controls (e.g., accessible manual lighting controls, glare control and automatic dimming controls) are provided for 40% of regularly occupied building space, OR</td>
<td>15</td>
</tr>
<tr>
<td>Accessible lighting controls (e.g., accessible manual lighting controls, glare control and automatic dimming controls) are provided for 50% of regularly occupied building space and occupancy sensors and/or light sensors for appropriate spaces such as bathrooms, conference rooms, etc.</td>
<td>20</td>
</tr>
</tbody>
</table>
Exhibit II.C.1
Existing Building Assessment Tool

<table>
<thead>
<tr>
<th>Building Attribute</th>
<th>Attribute Definition</th>
<th>Building Condition Scoring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10% of spaces have a minimum daylight factor of 2%.</td>
</tr>
<tr>
<td>Low Emitting Materials</td>
<td>Effectiveness of measures implemented for the procurement of low emitting materials for maintenance, cleaning and pest management, including adhesives, sealants, paints, carpet systems, furnishings, cleaning products, and pest management products.</td>
<td>No procurement policy in place regarding the use of low emitting materials for maintenance, cleaning or pest management.</td>
</tr>
<tr>
<td>D. Environmental Impact of Materials</td>
<td>Recycled Content</td>
<td>No EPA designated materials used in the building meet recycled content recommendations.</td>
</tr>
<tr>
<td></td>
<td>For materials used in operation and maintenance of the building and furnishings that are not EPA designated materials, the recycled content is such that the sum of post-consumer recycled content plus one-half of the pre-consumer content constitutes at least 10%</td>
<td>No non-designated materials used in the building have recycled content.</td>
</tr>
</tbody>
</table>
Exhibit II.C.1

Existing Building Assessment Tool

<table>
<thead>
<tr>
<th>Building Attribute</th>
<th>Attribute Definition</th>
<th>Building Condition Scoring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>(based on cost) of the total value of the materials used in the building.</td>
<td>0 2 4 8 10</td>
<td></td>
</tr>
<tr>
<td>BioBased Content
For USDA-designated materials used in operation and maintenance of the building and new furnishings, use products meeting or exceeding USDA’s biobased content recommendations.</td>
<td>No USDA-designated materials meet biobased content recommendations.</td>
<td>Designated materials have some biobased content but less than 50% of recommended amount.</td>
</tr>
<tr>
<td>0 2 4 8 10</td>
<td>For other materials used in operation and maintenance of the building and new furnishings, use biobased products made from rapidly renewable resources and certified sustainable wood products.</td>
<td>No biobased products made from rapidly renewable resources or certified sustainable wood products are used.</td>
</tr>
<tr>
<td>0 2 4 8 10</td>
<td>Construction Waste
Identify local recycling and salvage operations that process construction waste from building operation and maintenance, minor repairs and renovations and discarded furnishings. Recycle or salvage at least 50%</td>
<td>No attempt to identify local recycling and salvage operations that process building related waste have been identified, or building records contain no</td>
</tr>
</tbody>
</table>
Exhibit II.C.1
Existing Building Assessment Tool

<table>
<thead>
<tr>
<th>Building Attribute</th>
<th>Attribute Definition</th>
<th>Building Condition Scoring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>percent of construction, demolition and land clearing waste, excluding soil, from building operation and maintenance; minor repairs and renovations; and discarded furnishings where markets or on-site recycling opportunities exist.</td>
<td>documentation of attempts to identify such operations or demonstration of non-availability. Opportunities exist yet no wastes are recycled or salvaged.</td>
<td>the wastes for which markets or on-site recycling opportunities exist are recycled or salvaged.</td>
</tr>
<tr>
<td>Ozone Depleting Compounds</td>
<td>Eliminate the use of ozone depleting compounds (ODC) used in the building where alternative environmentally preferable products are available, consistent with either the Montreal Protocol and Title VI of the Clean Air Act Amendments of 1990, or equivalent overall air quality benefits that take into account life cycle impacts.</td>
<td>No ozone depleting compounds (ODC) used in the building have been eliminated or replaced with alternatives, where alternative environmentally preferable products are available for these compounds. There is no inventory of ODC containing equipment in building.</td>
</tr>
<tr>
<td>E. Economics</td>
<td>Cost Current and avoidable potential costs associated with ownership and use of buildings</td>
<td>Cost to incorporate the Guiding Principles is greater than 11% of Present Replacement Value (PRV)</td>
</tr>
</tbody>
</table>

Department of Health and Human Services
Sustainable Buildings Implementation Plan

8

December 31, 2008
Exhibit II.C.1
Existing Building Assessment Tool

<table>
<thead>
<tr>
<th>Building Attribute</th>
<th>Attribute Definition</th>
<th>Building Condition Scoring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Payback</td>
<td>Potential payback for improvements over the remaining life cycle or lease</td>
<td>Payback period is greater than the remaining useful life of the building, or 10 years based on Life Cycle Cost (LCC) of the improvements</td>
</tr>
<tr>
<td>F. Conformance with Local Environmental Requirements</td>
<td>Environmental Regulations Facility/Building is in compliance with all applicable federal, state and local environmental regulations (e.g., compliance with fuel storage tanks system, air emissions such as boilers and emergency generators, illicit discharges to storm and/or sanitary sewer, NPDES and Sanitary Discharge permits)</td>
<td>Facility/building management has NOT established procedures for an environmental compliance program through the facility/organization’s EMS as required by Executive Order 13423</td>
</tr>
</tbody>
</table>

| Environmental Management System (EMS) Executive Order (EO) 13148 required all Federal Agencies to | Facility/building management has not established requirements/procedures to address applicable | Facility/building management has established requirements/procedures to address applicable sustainable practices as required by Executive Order 13423 through the facility/organization’s EMS, including procedures for setting | Facility/building management has met all the criteria in Column B, AND has incorporated at least one of the applicable sustainable practices through the EMS, AND the facility/organization has established an | Facility/building management has met all the criteria in Column B and C AND Facility/organization has verified |

<table>
<thead>
<tr>
<th>Score</th>
<th>0</th>
<th>10</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>0</td>
<td>15</td>
<td>30</td>
<td>50</td>
<td>Score</td>
</tr>
</tbody>
</table>

Department of Health and Human Services Sustainable Buildings Implementation Plan

December 31, 2008
Exhibit II.C.1
Existing Building Assessment Tool

<table>
<thead>
<tr>
<th>Building Attribute</th>
<th>Attribute Definition</th>
<th>Building Condition Scoring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>determine ‘appropriate’ facilities for implementing EMS. EO 13423 requires that EMSs serve as the primary mechanism for achieving compliance with all aspects of the order</td>
<td>sustainable practices as required by Executive Order 13423 through the facility/organization’s EMS. objectives and target as appropriate, monitoring, training, and management review, but has not implemented the requirements/procedures implementation schedule to complete incorporation of the remainder of the applicable sustainable practices through the EMS. conformance and performance through monitoring and management review OR Facility/Building in not included in the HHS ‘appropriate’ facility list and is not required to have an EMS</td>
</tr>
</tbody>
</table>

1. www1.eere.energy.gov/femp/water_fedrequire.html
2. 1992 Energy Policy Act fixture performance requirements: showerheads: 2.5 gallons per minute at 80 psi; urinals: 1 gallon per flush; faucets: 2.2 gallons per minute at 60 psi; toilets: 1.6 gallons per flush

<table>
<thead>
<tr>
<th>Building Attribute</th>
<th>Building Condition Scoring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Achieved Score</td>
</tr>
<tr>
<td>GUIDING PRINCIPLES</td>
<td></td>
</tr>
<tr>
<td>A. Energy Performance</td>
<td></td>
</tr>
<tr>
<td>Energy Efficiency</td>
<td>80</td>
</tr>
<tr>
<td>Measurement & Verification</td>
<td>40</td>
</tr>
<tr>
<td>B. Protect & Conserve Water</td>
<td></td>
</tr>
<tr>
<td>Indoor Water</td>
<td>40</td>
</tr>
<tr>
<td>Outdoor Water</td>
<td>40</td>
</tr>
<tr>
<td>Process Water</td>
<td>20</td>
</tr>
<tr>
<td>C. Enhance Indoor Environmental Quality</td>
<td></td>
</tr>
<tr>
<td>Thermal Comfort</td>
<td>20</td>
</tr>
<tr>
<td>Ventilation</td>
<td>20</td>
</tr>
<tr>
<td>Moisture Control</td>
<td>20</td>
</tr>
<tr>
<td>Daylighting or Lighting Controls</td>
<td>20</td>
</tr>
</tbody>
</table>
Exhibit II.C.1
Existing Building Assessment Tool

<table>
<thead>
<tr>
<th>Building Attribute</th>
<th>Building Condition Scoring Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Emitting Materials</td>
<td>20</td>
</tr>
<tr>
<td>D. Environmental Impact of Materials</td>
<td></td>
</tr>
<tr>
<td>Recycled Content</td>
<td>30</td>
</tr>
<tr>
<td>BioBased Content</td>
<td>20</td>
</tr>
<tr>
<td>Construction Waste</td>
<td>20</td>
</tr>
<tr>
<td>Ozone Depleting Compounds</td>
<td>30</td>
</tr>
<tr>
<td>GUIDING PRINCIPLES SCORE</td>
<td>420</td>
</tr>
</tbody>
</table>

Non-Guiding Principles	
Economics	
Cost	50
Payback	50
Conformance with local Environmental Requirements	
Environmental Regulations	50
Environmental Management Systems (EMS)	50
Bonus Categories	
Renewable Energy	30
Maintain/Restore Hydrology	20
TOTAL NON-GUIDING PRINCIPLES AND BONUS SCORE	250
Total Score	670
This page intentionally left blank
Exhibit II.C.1
Existing Building Assessment Tool
Instructions

The following instructions are designed to help in the collection and recording of sustainable actions achieved on an applicable capital asset. The tool is designed to collect and measure the Department’s achievement in meeting the Guiding Principles as described in Executive Order 13423 and the Energy Independence and Security Act of 2007 (EISA). There are four (4) building attributes that are evaluated and rated under this evaluation and prioritization matrix which follows the Guiding Principles and can score up to 420 points. Additional points can be achieved through non-Guiding Principle and bonus achievements that can add up to 250 points. The total score achieved will form the Sustainability Index (SI). The maximum SI is a rating of 670 points:

Guiding Principle Achievements (Minimum requirements)

 A. Energy Performance (120 points)
 B. Protect and Conserve Water (100 points)
 C. Enhance Indoor Air Quality (100 points)
 D. Environmental Impact of Materials (100 points)

Non-Guiding Principle Achievements

 E. Economics (100 points)
 F. Conformance with Local Environmental Requirements (100 Points)

Bonus

 Renewable Energy (30 points)
 Maintain/Restore Hydrology (20 points)

The SI will be one of the elements along with Mission Dependency and Facility Conditions Index used to support decision making.

- General Information

 o A building is exempt from having to complete this tool if the building receives a third party green building certification from an ANSI-accredited standards developer and the contract for design was awarded prior to October 1, 2008. The building is considered meeting the intent of the Guiding Principles (100%).
 o EISA section 432, paragraph 3(A) requires a comprehensive energy and water evaluation be completed every 4 years. Currently building condition assessments are required on buildings every five years. It is suggested that to save money and effort that the building assessment and energy and water evaluations be completed concurrently on a four year cycle.
Exhibit II.C.1
Existing Building Assessment Tool
Instructions

- The highest priority buildings in the existing buildings inventory are those owned assets 5,000 gross square or more with the exception of housing. See Appendix L and Appendix D of the Sustainable Buildings Implementation Plan (SBIP) December 31, 2008 for asset types and definitions of applicable buildings.
- In reporting to OMB, all owned and direct leased buildings in the Federal Real Property Profile (FRPP) are considered in the Department’s existing building inventory.
- All projects as defined in the SBIP with design awards after October 1, 2008 must incorporate the Guiding Principles 100%.
- Highlight each achievement and record the score on Appendix H. An asset must achieve full compliance with the Guiding Principles to score building as meeting in FRPP. An existing building can achieve a top score of 670 by achieving a 100% score for Non-Guiding Principle achievements.
- The scores under the Building Condition Scoring Criteria are cumulative. The achieved score of 20 includes that accomplished under the 10 and the score of 30 includes that achieved under the 20 and 10. The high score achieved under the criteria will have achieved every part within the scoring criteria.

- Asset Information on EB Assessment Tool
 - Include the asset information as recorded in ARIS.

- Energy Performance (120 points)
 - Energy Efficiency
 - Established an energy usage baseline using historical data (2003 EUI)
 - Established an energy usage baseline using ASHRAE.IESNA 90.1-2007
 - An Energy Conservation Plan (ECP) shall consist of an estimate of the future energy performance of the building and a specific description of the energy saving projects or practices that will reduce the Energy Usage Intensity (EUI). The evaluation of each project shall use life cycle costing. The ECP shall include a schedule listing the projects and an estimated time of completion to meet the reduction of EUI goals.
 - Measurement and Verification
 - E.O. 13423, sec. 2(a) Metering. To the maximum extent practicable, agencies shall install metering devices that measure consumption of potable water, electricity, and thermal energy in Federal buildings and other facilities and grounds. Data collected shall be incorporated into Federal tracking systems and be made available to Federal facility managers. Agencies should consider inclusion of metering requirements in all ESPCs and UESCs, as appropriate.
 - EISA Section 434(b), Metering, amends Section 543(e)(1) of NECPA (42 U.S.C. 8253(e)(1)) by inserting after the second sentence the following: "Not later than October 1, 2016, each agency shall provide for equivalent metering.
Exhibit II.C.1
Existing Building Assessment Tool

Instructions

of natural gas and steam, in accordance with guidelines established by the
Secretary under paragraph (2)."

- The High Performance Buildings Database website is:
 http://www.eere.energy.gov/buildings/database/
 - Renewable Energy
 - A 30 point bonus is achievable with the installation of an on site renewable
 energy project and entering a renewable energy purchase contract. Applicable
 systems would include solar, wind, geothermal, low-impact hydro, biomass
 and bio-gas strategies.

- Protect and Conserve Water (100 points)
 - Verify the installation of water conserving measures for indoor and outdoor
 systems.
 - Verify a water management plan and FEMP best management practices for water
 conservation are in place.
 - Verify installation of water meters or estimate annual building water use baseline.
 - Verify use of water efficient landscape or use of recycled water for irrigation.
 - Verify if cost effective measures are in place for process water for equipment,
 cooling towers, boilers, etc.
 - Where site redevelopment such as a paving project occurs, a 20 point bonus is
 achievable when the project maintains or restores the pre-development hydrology
 of the site with regard to temperature, rate, volume, and duration of flow using
 site planning, design, construction, and maintenance strategies. (EISA Section
 438)

- Enhance Indoor Environmental Quality (100 points)
 - The measurement of ventilation, thermal comfort, moisture control, lighting
 (controlled and natural) and low emitting materials.
 - Verify thermal comfort and indoor air quality for building occupants.
 - Verify building design ventilation rates and building system performance.
 - Verify the building has an established and implemented moisture control strategy.
 - Assess if location of manual light, glare and dimming controls are accessible to
 building occupants or calculate percentage of space having a minimum natural
 daylight factor of 2%.
 - Verify a procurement policy has been developed and implemented for use of low
 emitting materials for maintenance, cleaning, and pest management.

- Environmental Impact of Materials (100 points)
 - Confirm policies are in place to ensure use of these materials/products when cost
 and performance expectations can be met.
 - Record the effort in meeting recycled content, biobased content, construction
 waste, and ozone depleting compounds for both existing building renovations and
 operations and maintenance activities.
Exhibit II.C.1
Existing Building Assessment Tool
Instructions

- **Economics (100 points)**
 - Record the cost and payback in achieving and meeting the *Guiding Principles* as a measure of a facility Replacement Value and Life Cycle Cost.

- **Conformance with Local Environmental Requirements: (100 points)**

 - **Environmental Regulations (50 points):**
 - To achieve the highest score, a facility/building manager must demonstrate that there are no violations of environmental regulations. This can only be done if building/facility has documented procedures in place to identify and account for applicable environmental requirements.
 - It is expected that this will require that facility managers, environmental managers (including Environmental Management Systems managers for appropriate facilities that have an official EMS) and supervisors to coordinate and develop the plans and procedures to address conformance. This aspect is required regardless of whether the facility has an EMS or not.
 - Points will be awarded under this attribute progressively from (0 points) for non-compliant or lacking procedures and evaluations protocols; to, full compliance with applicable federal, state and local environmental regulations (50 points).
 - Examples of potential violation include:
 - lack of controls on to prevent exceedence of discharge limits or
 - failure to meet discharge limits from a process or batch discharge such as cage wash systems or cleaning of pipes,
 - potable water cross connections,
 - cross connections with sanitary or stormdrain systems,
 - exceedance of air emission from regulated sources such as emergency generators, boilers, fume hoods or ,
 - improper storage of hazardous chemicals,
 - non-compliance with fuel storage tank (above ground and underground) provisions,
 - failure to maintain proper operating logs for regulated equipments and mechanical systems

 - **Environmental Management System (EMS) (50 points)**
 - Executive Order (EO) 13148 required all Federal Agencies to determine ‘appropriate’ facilities for implementing EMS. EO 13423 requires that EMSs serve as the primary mechanism for achieving compliance with all aspects of the order.
 - Not all facilities are required to have an EMS and if this is the case, then the full 50 Points will be scored for this attribute.
Exhibit II.C.1
Existing Building Assessment Tool
Instructions

- In the case where an EMS is required (HHS declared appropriate facility), points will be awarded on a progressive basis from 0 points to a maximum of 50.

To achieve favorable ratings in this area, it is expected that the facility/building management will have met with the Environmental Management System (EMS) manager and implemented requirements/procedures to address applicable sustainable practices as required by Executive Order 13423 through the facility/organization’s EMS, including procedures for setting objectives and targets as appropriate, monitoring, training, and management review.
Exhibit III.A.1
O & M Checklist
This page intentionally left blank
Introduction/Instructions

The purpose of this checklist is to provide facility managers and operations and maintenance personnel with a simple survey tool to determine the extent of the use of sustainable practices in their facility. This checklist does not take the place of the HHS Sustainable Buildings Implementation Plan (SBIP), but it can be used as a “first cut” to see if the facility has implemented enough sustainable practices to warrant further consideration. The checklist is organized by the guiding principles. A score of 50% or more (yes answers) in each of the five guiding principle categories might warrant a more in depth evaluation to see if the facility meets the intent of the MOU. This comprehensive evaluation should follow the guidelines set forth in Appendix H of the SBIP. If the intent of the MOU is met, the building can be included in the Federal Sustainable Buildings Database.

1. Employ Integrated Design Principles

1.1 Integrated Design

A. The facility HVAC system has been designed so that maintenance and inspection is easy to accomplish, including adequate space to maintain, repair and replace equipment in mechanical rooms and interstitial spaces. This includes providing access doors in ceilings or walls to reach air handling units, filter banks, fan-coil units, terminal boxes, and controllers or sensors that require regular maintenance and calibration?

☐ Yes ☐ No ☐ N/A

B. Does the facility contain adequately sized and properly designed storage facilities in the building, such as a separately exhausted central chemical supply area near the loading dock, janitor's closets on each floor, dedicated recycling storage areas and handling and transport mechanisms?

☐ Yes ☐ No ☐ N/A

C. Are there permanent walk-off grilles or mats at all entrances to eliminate tracked-in dirt. Use landscaping or railings to keep people on the pavement near the building entrances?

☐ Yes ☐ No ☐ N/A

D. Does the building contain durable, low-maintenance, soil-resistant, low-emitting building materials, equipment and furnishings. In heavily trafficked areas are carpet tiles used instead of broadloom so that small stained sections can be replaced and recycled to avoid using strong carpet cleaners.

☐ Yes ☐ No ☐ N/A
1.2 Commissioning

A. Does the facility have a comprehensive, preventive maintenance program to keep all building systems functioning as designed?

☐ Yes ☐ No ☐ N/A

B. Has the facility had the HVAC systems, electrical systems (emergency power, switchgear and lighting) and controls performance tested in the last year?

☐ Yes ☐ No ☐ N/A

C. Has the facility had an air and water balance in the last 5 years?

☐ Yes ☐ No ☐ N/A

D. Have any of the facilities personnel received training on sustainable principles?

☐ Yes ☐ No ☐ N/A

E. Have any of the facilities personnel received operational facilities training specific to your facility?

☐ Yes ☐ No ☐ N/A

F. Does the building staff have drawings and O & M Manuals?

☐ Yes ☐ No ☐ N/A

G. Is there a feedback mechanism to inform the facility manager of conditions and deviations of the facility design intent?

☐ Yes ☐ No ☐ N/A

2. Optimize Energy Performance

2.1 Controls

A. Does the facility use schedule, occupancy or photocell sensors to control lighting and plug loads?

☐ Yes ☐ No ☐ N/A
B. Are timers or other type controls used to turn on/off building equipment?

☐ Yes ☐ No ☐ N/A

C. Are lights, computers, and equipment manually turned off when not in use (if the equipment is not equipped with automatic controls)?

☐ Yes ☐ No ☐ N/A

D. Are power-down features enabled on office equipment?

☐ Yes ☐ No ☐ N/A

E. If the existing lighting is more than 15 years old have the fixtures been updated with newer technology (T-12 lamps and magnetic ballasts upgraded to T-8 lamps and electronic ballasts)?

☐ Yes ☐ No ☐ N/A

E. If the existing heating and cooling equipment is more than 20 years old has it been updated with newer technology (condensing boilers, non-CFC cooling equipment, high efficiency electric motors and variable speed drives where applicable)?

☐ Yes ☐ No ☐ N/A

2.2 Measurement and Verification

A. Is Electricity metered?

☐ Yes ☐ No ☐ N/A

B. Is steam, natural gas or other utilities (excluding water) metered?

☐ Yes ☐ No ☐ N/A

C. Has the facility been entered into the EPA’s Energy Star benchmarking tool?

☐ Yes ☐ No ☐ N/A
2.3 **Energy Auditing**

A. Has an energy audit been conducted in the last 4 years?

- [] Yes
- [] No
- [] N/A

2.4 **Renewable Energy**

A. Is there any on-site renewable energy generated (solar, geothermal, biomass, hydro, ocean, etc…)?

- [] Yes
- [] No
- [] N/A

B. Does the facility purchase any energy from renewable sources?

- [] Yes
- [] No
- [] N/A

3. **Protect and Conserve Water**

3.1 **Indoor Water**

A. Are systems regularly inspected for leaks and are leaks repaired in a timely manner?

- [] Yes
- [] No
- [] N/A

B. Does the facility contain low flow fixtures (fixtures that meet EPAct 1992)?

- [] Yes
- [] No
- [] N/A

C. Is the water metered?

- [] Yes
- [] No
- [] N/A

3.2 **Outdoor Water**

A. Is there an outside sprinkler system for watering plants (if N/A skip to 3.3)?

- [] Yes
- [] No
- [] N/A

B. Is the landscaping accomplished with native or indigenous plants to minimize watering requirements?

- [] Yes
- [] No
- [] N/A
3.3 **Discharge/Storm Water**

A. Facility discharge water meets EPA regulations.

☐ Yes ☐ No ☐ N/A

B. If equipped with a cooling tower, is the make-up metered?

☐ Yes ☐ No ☐ N/A

4. **Enhance Indoor Environmental Quality**

4.1 **Ventilation and Thermal Comfort**

A. Does the facility have a comprehensive, preventive maintenance program (and records) to keep all building systems functioning as designed (note: this is the same as 1.2A)?

☐ Yes ☐ No ☐ N/A

B. Is the facility equipped to continuously monitor equipment performance (ie. is it equipped with direct digital controls – if N/A, skip C)?

☐ Yes ☐ No ☐ N/A

C. Do the direct digital controls provide early detection of defects or failures in equipment through use of service alarms?

☐ Yes ☐ No ☐ N/A

D. Can you minimize equipment failures by using preventive maintenance, standby equipment, etc… so that the failed component can be isolated and repaired without interrupting system performance?

☐ Yes ☐ No ☐ N/A

E. Does the facilities staff use internal and external test systems to locate faults and fix problems (such as vibration analysis, infrared cameras, oil analysis, etc…)?

☐ Yes ☐ No ☐ N/A
F. Does the O&M staff check to see that pressure differentials are in fact maintained, to avoid the undesirable flow of contaminants from restrooms, kitchens, parking garages, laboratories, operating rooms etc…?

☐ Yes ☐ No ☐ N/A

G. Outside air dampers all work as designed.

☐ Yes ☐ No ☐ N/A

H. Indoor temperature and humidity conditions are easily maintained between 70 and 78 degrees F and between 20 and 60% RH year round.

☐ Yes ☐ No ☐ N/A

I. Air handling equipment is equipped or modified to be equipped with an economizer cycle.

☐ Yes ☐ No ☐ N/A

4.2 Moisture Control

A. Dry surfaces promptly. Water-damaged, porous building materials or furnishings, if not dried and cleaned within 24 hours may have to be replaced.

☐ Yes ☐ No ☐ N/A

B. Appropriate conditions and procedures are taken to prevent moisture condensation.

☐ Yes ☐ No ☐ N/A

C. A water tight building envelope is maintained (including the roof)

☐ Yes ☐ No ☐ N/A

4.3 Day-lighting

A. Are there any areas in the facility with skylights or clear stories?

☐ Yes ☐ No ☐ N/A
Exhibit III.A.1
O & M Checklist

4.4 Low-Emitting Materials

A. Does the facility use integrated pest management methods (non-pesticide methods) of pest control as part of the overall building maintenance program?

☐ Yes ☐ No ☐ N/A

B. Does the facility staff shut down ventilation system(s) and remove occupants until pesticide applications are completed and perform applications during non-working hours to the maximum extent practicable?

☐ Yes ☐ No ☐ N/A

C. Are carpets steam cleaned (instead of using chemical cleaners)?

☐ Yes ☐ No ☐ N/A

D. Are precautions taken to prevent excess moisture or cleaning residue accumulation during cleaning operations?

☐ Yes ☐ No ☐ N/A

E. When appropriate are "certified" environmental cleaning products used?

☐ Yes ☐ No ☐ N/A

F. The facilities staff has developed safe handling, disposal, and storage practices including procedures for spill control.

☐ Yes ☐ No ☐ N/A

G. Have maintenance practices been established to minimize exposure to hazardous materials by substituting less hazardous materials?

☐ Yes ☐ No ☐ N/A

H. Are cleaners used that biodegrade rapidly?

☐ Yes ☐ No ☐ N/A

I. Products are purchased that are concentrated, using less packaging,

☐ Yes ☐ No ☐ N/A
Exhibit III.A.1
O & M Checklist

J. Non-toxic pest control methods are used for indoor spaces and plants.
 □ Yes □ No □ N/A

K. A structured preventative maintenance program is in place to insure air ducts are clean and free of microorganisms.
 □ Yes □ No □ N/A

L. Low emission paint is used for maintaining surfaces?
 □ Yes □ No □ N/A

5.0 Reduce Environmental Impact of Materials

5.1 Recycled Content

A. Does the facility have a comprehensive recycling program with source separation and occupant incentives?
 □ Yes □ No □ N/A

B. Does the facility use on-site composting of organic materials?
 □ Yes □ No □ N/A

C. Use landscaping products with recycled content?
 □ Yes □ No □ N/A

D. Recycled paper products are purchased for the office, bathrooms and cafeteria.
 □ Yes □ No □ N/A

5.2 Bio-based Content

A. The facility staff uses bio-based products are used that meet or exceed the USDA’s bio-based content recommendations.
 □ Yes □ No □ N/A
5.3 Construction Waste – N/A

5.4 Ozone Depleting Compounds

A. Does the facility have HVAC or fire protection equipment that use CFCs (if N/A, skip this section)?

☐ Yes ☐ No ☐ N/A

B. The facility has replaced all CFCs in the cooling equipment with environmentally friendly refrigerants.

☐ Yes ☐ No ☐ N/A

C. The facility has replaced all Halon-based fire suppression equipment with environmentally friendly fire suppression agents.

☐ Yes ☐ No ☐ N/A

5.5 Hazardous Materials

A. The facility has a comprehensive Asbestos program.

☐ Yes ☐ No ☐ N/A

B. The facility has a comprehensive Mercury program.

☐ Yes ☐ No ☐ N/A

C. The facility has a comprehensive PCB program.

☐ Yes ☐ No ☐ N/A

D. The facility has a comprehensive Lead program.

☐ Yes ☐ No ☐ N/A
Exhibit III.B.1
Diagram of HHS EMS Structure
HHS Environmental Management Systems (EMSs) Structure

Higher-Tier EMS

Multi-Site Organizational EMS
- Headquarters & Non-Landholding OPDIVs
 - ACF
 - CMS
 - PSC
 - AHRQ
 - HQ
 - SAMHSA
 - AoA
 - HRSA
 - Regional Offices

Facility EMS’s (18)
- Landholding OPDIVs
 - CDC (10)
 - IHS (2)
 - FDA (2)
 - NIH (4)

Upcoming Highlights
- **HHS (Go Green)**
 - Headquarters pilot (2009)
 - Non-landholding OPDIVs (2012)
- **IHS (CHEMS; 18 by 2013)**
 - Seven in 2009
 - Seven in 2010
 - Four in 2011
 - **NIH**
 - Bayview campus (2010)
Exhibit III.B.2
HHS Facilities Currently Implementing EMS
Exhibit III.B.2
HHS Facilities Currently Implementing EMS

<table>
<thead>
<tr>
<th>OPDIV</th>
<th>Facility</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>City</td>
</tr>
<tr>
<td>CDC</td>
<td>Roybal</td>
<td>Atlanta</td>
</tr>
<tr>
<td>CDC</td>
<td>Chamblee</td>
<td>Atlanta</td>
</tr>
<tr>
<td>CDC</td>
<td>Lawrenceville</td>
<td>Lawrenceville</td>
</tr>
<tr>
<td>CDC</td>
<td>Anchorage</td>
<td>Anchorage</td>
</tr>
<tr>
<td>CDC</td>
<td>Spokane</td>
<td>Spokane</td>
</tr>
<tr>
<td>CDC</td>
<td>Fort Collins</td>
<td>Fort Collins</td>
</tr>
<tr>
<td>CDC</td>
<td>Taft & Hamilton Bldgs</td>
<td>Cincinnati</td>
</tr>
<tr>
<td>CDC</td>
<td>Pittsburgh</td>
<td>Pittsburgh</td>
</tr>
<tr>
<td>CDC</td>
<td>Morgantown</td>
<td>Morgantown</td>
</tr>
<tr>
<td>CDC</td>
<td>San Juan</td>
<td>San Juan</td>
</tr>
<tr>
<td>FDA</td>
<td>White Oak Campus</td>
<td>Silver Spring</td>
</tr>
<tr>
<td>FDA</td>
<td>Jefferson Labs</td>
<td>Jefferson</td>
</tr>
<tr>
<td>IHS</td>
<td>Hastings Indian Med Cen</td>
<td>Tahlequah</td>
</tr>
<tr>
<td>IHS</td>
<td>San Xavier Health Cen</td>
<td>Tucson</td>
</tr>
<tr>
<td>NIH</td>
<td>NIH Montgomery County*</td>
<td>Bethesda</td>
</tr>
<tr>
<td>NIH</td>
<td>NI Env Health Services</td>
<td>Research Triangle</td>
</tr>
<tr>
<td>NIH</td>
<td>Rocky Mountain Labs</td>
<td>Hamilton</td>
</tr>
<tr>
<td>NIH</td>
<td>NIH Facilities at FT Detrick</td>
<td>Frederick</td>
</tr>
<tr>
<td>NIH</td>
<td>Bayview Campus</td>
<td>Baltimore</td>
</tr>
</tbody>
</table>

* Includes NIH Animal Center in Poolesville, Md and NIH Lease Facilities in Rockville, Md
This page intentionally left blank
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S
This page intentionally left blank
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

<table>
<thead>
<tr>
<th>Health and Human Services (HHS)</th>
<th>Each OPDIV shall establish an integrated project team (IPT) approach that ensures a project sustainability strategy is incorporated consistent with the policy.</th>
</tr>
</thead>
</table>
| Centers for Disease Control & Prevention/ATSDR (CDC) | CDC establishes a core integrated project team (IPT) for each project, consistent with HHS policy. IPT members are selected by their expertise as it relates to the scope and size of the project. CDC assesses if internal or external resources are available and needed to support the IPT fully. CDC considers contracts with expertise in green building qualifications for planning, design, construction, commissioning and operations. The current CDC design and construction guidelines require:
 - Establishment of aggressive energy and water conservation goals early in the project planning stage
 - Establishment of a core team and extended energy technology core team with specific leadership and line of responsibility that set goals of technologies to be used from the planning stage through design, construction and life cycle of the facility
 - Utilization of energy consultants to supplement engineering staff on energy intensive projects
 - Commissioning of all new buildings and major renovations.

 A LEED Accredited Professional serves on all IPT teams on all phases of the project.

 CDC has LEED Accredited personnel on staff. |
| Food and Drug Administration (FDA) | The FDA establishes a core integrated project team at the project’s initiation and through project completion. The integrated project team consists of an integrated multidisciplinary design team (A/E of Record) with a certified LEED professional. The team is headed by an FDA project officer (engineer with specific project experience), customer relations manager, operations and maintenance personnel, environmental and occupational safety and health professionals, and in-house energy reviewer for energy intensive projects. The team establishes sustainable goals for the project. The FDA utilizes the NIH Design Requirements Manual (DRM) which will state that all the ‘Guiding Principles’ shall be considered and/or incorporated into all design contracts. |
| Indian Health Service (IHS) | The IHS establishes an Integrated Project Team (IPT) at the beginning of project planning. The team consists of Program representatives, Facility management, Tribal, Finance, Head Quarters Facility Planning staff, Environmental specialist staff, Project Management staff, and A/E project management staff. The DES has a LEED Accredited |
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

National Institutes of Health (NIH)	Professional to serve on IPT team during the pre-project planning phase. The 2007 IHS A/E Design Guide requires, when a designer is employed, that A/E participate on the IPT. The IPT will conduct a Concept Phase Sustainable Design Charrette. Additional meetings will be conducted throughout the design process to evaluate the status and revise goals as necessary. Reviews by the NIH EMS focus groups revealed that the process for design and construction did not foster attaining sustainability objectives due to its organizational structure and the lack of Integrated Project Teams (IPTs) with sustainable design expertise at the project planning phase. To address this problem NIH has acquired 2 government employees who are LEED Accredited Professionals (AP). The Department of Environmental Protection (DEP) has 2 additional full time APs as contractors. These professionals serve on the IPTs during the pre-project planning phase, and assist Project Officers in meeting sustainability requirements until the project IPTs are established. The DEP reviews all FPAA sustainability checklists for compliance with commitments to have a charter and a full IPT in place prior to commencement of design and construction. Requirements to follow all Guiding Principles, including Integrated Design Principles have been included in the new NIH Design Requirements Manual.
Health and Human Services (HHS)	The IPT shall establish and monitor performance goals consistent with the sustainability strategy for the project and document in the FPAA.
Centers for Disease Control & Prevention/ATSDR (CDC)	The CDC has incorporated the sustainability MOU performance goals into the current design and construction guidelines and measures performance by using the U.S Green Building Council’s Leadership in Energy and Environmental Design (LEED) or the Green Building Initiative’s Green Globes rating systems. Performance targets are also evaluated using www.eere.energy.gov/femp Building Life-Cycle Costing Program (BLCC 5.3-06), Target Base Energy Budget, GREENGUARD http://www.greenguard.org low emission products for interior spaces, and industry Best Management Practices For projects meeting HHS approval thresholds the IPT will: • Establish and monitor performance goals consistent with the sustainability strategy for the project and...
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV'S

<table>
<thead>
<tr>
<th>Department</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhibit IV.A.1</td>
<td>document in the FPAA with the HHS Sustainability Checklist.</td>
</tr>
<tr>
<td></td>
<td>• Establish goals at pre-project planning and identify specific technologies to be considered</td>
</tr>
<tr>
<td></td>
<td>• Determine the level of appropriate certification under LEED™</td>
</tr>
<tr>
<td></td>
<td>• Coordinate and incorporate EMS plans</td>
</tr>
</tbody>
</table>

For projects under the HHS approval thresholds, CDC utilizes a Project Evaluation Ranking Tool (PERT) to coordinate a project’s impact on/with environmental, energy, sustainable, and EMS programs as well as the Agency’s asset management plan. PERTs are scored by a CDC Asset Management Team (AMT).

Food and Drug Administration (FDA)

The FDA has completed Sustainability Assessments on 100% of its owned assets 5000 SF or more for the ‘State of their Sustainability, using Appendix H as the measurement and verification tool. Total assessed square footage is equal to 1,741,998 square feet. The assessments will aid in the process of developing sustainable design criteria that take into consideration environmental stewardship, social responsibility, a quality work environment, and conservation. The FDA will incorporate the Energy Policy MOU into our proposed design guidelines and verify measure of performance by either Leadership in Energy and Environmental Design (LEED) or Green Globe certification and life cycle cost analysis.

The IPT will be given a copy of the results from the sustainability assessments of their specific asset, which will allow them to establish performance goals consistent with HHS sustainable policies and requirements and will be documented in the FPAA when applicable.

Indian Health Service (IHS)

The A/E Guide includes sustainable design guidance in the areas identified through implementation of LEED and/or Green Globes. The IPT shall establish performance goals including sustainable site, optimize energy performance, protection and conservation of water, environmental impact of materials, enhance Indoor Environmental Quality, renewable energy and sustainable certification. The IPT may establish additional performance goals specific to each project. The performance goals shall consider all phases of the buildings life cycle. Additional meetings are required throughout the project to ensure that the goals are implemented.

National Institutes of Health (NIH)

The Guiding Principles, as interpreted by HHS and applied to specific building types in use at the NIH are used to establish the required performance goals for all construction projects requiring completion of an FPAA. Requirements for establishing and meeting these goals are included in the new NIH Design Requirements Manual (DRM).

FPAA sustainability checklists for all new projects are reviewed by the DEP for compliance with NIH-wide goals and targets before submission to HHS for approval.

An assessment study was completed to develop baseline energy and water intensity data for NIH laboratory and office buildings for use in setting project specific goals.
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

<table>
<thead>
<tr>
<th>Health and Human Services (HHS)</th>
<th>The performance goals shall include Life Cycle Cost Analysis (LCCA).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centers for Disease Control & Prevention/ATSDR (CDC)</td>
<td>CDC performance goals include the IPT and Project team performing appropriate Life Cycle Cost Analysis (LCCA) for systems identified by the teams.</td>
</tr>
<tr>
<td>Food and Drug Administration (FDA)</td>
<td>FDA’s design guidelines require the Integrated Project Team (IPT) to use building life-cycle analysis on all projects. The IPT shall list sustainable design features where applicable, for all new and major renovations projects, comparing additional first cost against payback period regardless of how long or short the payback period may be, with a goal of designing sustainable projects with no additional first cost expenditures. The IPT shall consider conducting “trade-off” exercise, e.g., taking advantage of southern exposures, improving the energy efficiencies of the windows and walls and spending more on daylighting, thus reducing heating and cooling at the building’s perimeter and reduce the allowance for lighting fixtures, HVAC systems, etc. Protocols for decommissioning (i.e., facility assessments, remediation of contaminants, and waste minimization during decommissioning and deconstruction activities) are currently in place and being implemented. Formal protocol for recycling of construction debris during decommissioning and deconstruction will be established. The Sustainability Assessments being conducted by the FDA will determine the degree of sustainable design and/or renovation requirements.</td>
</tr>
<tr>
<td>Indian Health Service (IHS)</td>
<td>Life cycle cost analysis is performed during planning and also during the schematic design phase. Costs are evaluated and considered including all stages of the buildings lifecycle. Demolition of an existing facility that is replaced by a new facility is planned using principles of sustainability.</td>
</tr>
<tr>
<td>National Institutes of Health (NIH)</td>
<td>The proposed NIH policies, design criteria and Environmental Management Plans relating to facility sustainability are inherently focused on lifecycle performance. The current NIH Design Requirements Manual (DRM) requires the A/E to perform a computerized energy analysis (Building Energy Simulation) and a Life Cycle Costs analysis (LCCA). For LCCA, programs such as NIST BLCC or approved, professionally recognized and proven programs shall be used. For Building Energy Simulation, a professionally recognized and proven program such as the latest version of Energy Plus, DOE-2, Blast, or other Federal Energy Analysis tool shall be used. Alternative energy and greenhouse gas emission will be assessed using the NIST’s BEES. Protocols and contracts for facility assessment, remediation of contaminants, recycling of construction debris and waste minimization during decommissioning and deconstruction (end of cycle) activities are currently in place and operational. Procedures from NIH’s protocols a now part of the new AIHA/ANSI standard on Laboratory Decommissioning.</td>
</tr>
</tbody>
</table>
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

<table>
<thead>
<tr>
<th>Health and Human Services (HHS)</th>
<th>Each OPDIV shall develop, implement and maintain a commissioning procedure for all new and renovated facilities that meet or exceed the Capital Investment Review Board threshold ($10M).</th>
</tr>
</thead>
</table>
| Centers for Disease Control & Prevention/ATSDR (CDC) | The current CDC design and construction guidelines require commissioning for all new capital construction projects. Scope of commissioning to be determined by the project team on renovation and alteration projects. Capital construction projects are to comply with the minimum commissioning requirements of LEED EA Prerequisite 1 for Fundamental Building Systems Commissioning. Laboratory projects and other projects involving systems critical to continual operations are to comply with LEED EA Credit 3 Enhanced Commissioning requirements. Commissioning of systems includes:
 - Heating, cooling, ventilation and exhaust systems
 - Laboratory Equipment tied to HVAC system performance
 - Electrical Systems including lighting, switchgear, UPS, PDS, generators
 - Building automation controls, security systems
 - Fire and Life safety systems
 - Consider Building Envelope
Fundamental Commissioning process includes:
 - Installation verification
 - Operational performance test
 - Functional performance test
 - TAB verification
 - Re-testing as needed
 - Commissioning reports |
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

<table>
<thead>
<tr>
<th>Department</th>
<th>Implementation Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Training</td>
</tr>
<tr>
<td></td>
<td>Enhanced commissioning includes:</td>
</tr>
<tr>
<td></td>
<td>• Post occupancy performance testing</td>
</tr>
<tr>
<td></td>
<td>• Development of a systems manual</td>
</tr>
<tr>
<td></td>
<td>• O&M Personnel training verification</td>
</tr>
<tr>
<td>Food and Drug Administration (FDA)</td>
<td>The FDA design guidelines will require the commissioning of all new buildings re-commissioning of substantial renovations/additions in order to verify that design criteria are met. Commissioning will be performed by a true third party commissioning agent, under contract and supervision of the government. Per HHS sustainable requirements, FDA facilities will be re-commissioned every three years and/or during major renovations. The A/E shall provide commissioning requirements during design, based on information generated from the sustainability assessments. This action is later used to develop the commissioning plan. The third party commissioning agent shall inspect/confirm equipment installation, performance goals and requirements, by operational performance test, functional performance testing and re-testing as required, ultimately providing the government with a commissioning report. Based on the results of the sustainable assessments of each constructed asset, commissioning/re-commissioning requirements will be developed.</td>
</tr>
<tr>
<td>Indian Health Service (IHS)</td>
<td>In the 2007 IHS A/E Design Guide Commissioning requirements are outlined. The requirements comply with LEED EA prerequisite 1 and LEED EA Credit 3:</td>
</tr>
<tr>
<td></td>
<td>1. The A/E is responsible for developing the requirements for the building systems commissioning plan during design, and documenting all requirements to be completed by contractor who specialized in commissioning and is not the building construction contractor to ensure that building systems function in compliance with criteria set forth in the Project Contract Documents. The Commissioning Plan combines all system narratives, basis of design, assumptions and calculations for all systems into a single manual. When assembled with required as-built drawings and O&M manuals, this will provide an operating guide for the facility.</td>
</tr>
<tr>
<td></td>
<td>2. The Building System Commissioning Plan shall be outlined in the 65% construction document phase of the design as a submission separate volume.</td>
</tr>
<tr>
<td></td>
<td>3. In the final Construction Documents, the A/E shall provide a Division 17 Construction Specification dedicated to Building Systems Commissioning, which will address the various building systems to be commissioned. The document shall define “The Commissioning Team” which includes a Qualified Commissioning Specialist.</td>
</tr>
<tr>
<td></td>
<td>4. Health Care Facility systems includes Chilled water system (chiller, pump & coils control valves), Heating Hot water system (Boiler, pumps & coils control valve), HVAC system (AHUs, VAV box, Ventilation, DDC & duct work), Fire protection & Fire Alarm system, Electrical distribution system and other systems (such as O2, NO, & dental vacuum)</td>
</tr>
<tr>
<td>National Institutes of Health (NIH)</td>
<td>NIH commissioning requirements for laboratories and vivaria are currently being revised and updated for release in a new publication. Commissioning requirements have been integrated into the updated Design Requirements manual</td>
</tr>
</tbody>
</table>
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

Specifications implementing this guiding principle were incorporated into the NIH Office Fit-Out Guidelines approved in December 2007. These include requirements for commissioning or re-commissioning following projects that add to, disturb or interface with any base building HVAC system or components (including VAV boxes and ductwork), electrical systems, lighting systems, building automation, and/or temperature control. Commissioning will use practices tailored to the size and complexity of the fit-out project.

Facility condition assessments for existing buildings will be modified to include documentation of the scope and date of commissioning and recommendations for re-commissioning. Policies, plans and procedures, and contract resources for the sustainability re-commissioning of existing buildings are now under development.

Environmental Management Plans for CY 2009 will include development of sustainability assessments and re-commissioning procedures for existing buildings.

II. Optimize Energy Performance

Energy Efficiency. Establish a whole building performance target that takes into account the intended use, occupancy, operations, plug loads, other energy demands, and design to earn the Energy Star® targets for new construction and major renovation where applicable. For new construction, reduce the energy cost budget by 30 percent compared to the baseline building performance rating per the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., (ASHRAE) and the Illuminating Engineering Society of North America (IESNA) Standard 90.1-2007, Energy Standard for Buildings Except Low-Rise Residential Buildings. For major renovations, reduce the energy cost budget by 20 percent below pre-renovations 2003 baseline. Laboratory spaces may use the Labs21 laboratory Modeling Guidelines. Use Energy Star and FEMP designated Energy Efficient products, where available.

Health and Human Services (HHS)

Each OPDIV shall develop guidelines to incorporate performance targets consistent with the MOU, EPAct 2005, EO 13423 and EISA 2007. Innovation in design is encouraged. Exceptions to the performance target shall be defined on a case-by-case basis.

Per EO 13423 improve energy efficiency and reduce greenhouse gas emissions through reduction of energy intensity by 3% annually through the end of FY 2015 or 30% by the end of FY 2015, relative to the baseline of energy use in FY 2003.

Ensure renewable electricity consumption meets EPAct2005 goals of No Less Than:

- 3% in FY 2007-2009
In addition, EO 13423 requires the implementation of renewable energy generation projects on agency property for agency use, when life cycle cost effective and that at least half of renewable energy comes from new (after 1/1/1999) renewable sources. EISA 2007 Sec 523 requires that 30% of the hot water demand through the installation of solar water heaters, when life cycle effective.

Per EPAct 2005 purchase Energy Star and FEMP recommended products where cost effective or meets agency functional requirements. This includes premium efficient products such as electric motors, air conditioning, and refrigeration equipment procurements.

To address the EISA Section 434 Compliance, under the Guiding Principles Optimize Energy Performance include a description of your internal process for projects below the ASAM thresholds “to ensure that major replacements of installed equipment (such as heating and cooling systems), or renovation or expansion of existing space, employ the most energy efficient designs, systems, equipment, and controls that are life-cycle cost effective.” This may be reflected in your design guidelines or standard specifications; or it may be through an internal checklist for incorporation of energy or other sustainable elements.

Progress and implementation plan shall be reported in Annual Energy Report.

Centers for Disease Control & Prevention/ ATSDR (CDC)

The current CDC design and construction guidelines require compliance with the MOU, EPAct 2005, EO 13423, and EISA 2007.

CDC’s guidelines also include the following requirements:

- Evaluate all energy conservation measures and energy recovery schemes on a life cycle cost basis.
- Design and specify energy efficient systems and energy recovery for the HVAC systems. Energy recovery for lab exhaust air is not permitted.
- Heat wheels and other enthalpy recovery devices are preferred recovery schemes. All energy recovery schemes, including sensible-only schemes may be acceptable.
- Develop the Base Energy Budget from the Building Program, Conceptual Design, or other specific instructions. The budget represents a minimum level of efficiency to be achieved in the final design.
- Incorporate in the final design those design alternatives and energy conservation options identified by the design team that: are found to have returns on investment acceptable to CDC; that optimize the building design within the project budget limitations; and achieve the required energy savings targets.
- Evaluate and incorporate cost effective renewable energy technologies.
- Require Energy Star certified products.
Exhibit IV.A.1

Current Status of Implementation within Landholding OPDIV’S

- Consider more efficient glazing and shading alternatives.
- Consider increased energy efficiency through architecture, equipment, equipment operations, pipe and duct insulation thickness, and similar components and methodologies.
- Consider increased use of variable frequency drives, run around loops, economizers, heat recovery systems, and similar alternatives.

The CDC has developed an energy use baseline. The Annual Energy Report updates CDC’s progress.

For projects under the HHS approval thresholds, CDC utilizes a Project Evaluation Ranking Tool (PERT) to coordinate a project’s impact on/with environmental, energy, sustainable, and EMS programs as well as the Agency’s asset management plan. PERTs are scored by a CDC Asset Management Team (AMT).

The CDC posts work site energy saving, awareness information on the CDC intranet.

<table>
<thead>
<tr>
<th>Food and Drug Administration (FDA)</th>
<th>The FDA has completed the sustainability assessment of 100% of its owned asset 5000 SF or more utilizing Appendix H, ‘HHS Existing Building Evaluation and Priority Matrix. A total of 1,741,998 SF was assessed. To ensure that FDA assets, at or below the ASAM thresholds incorporate the guiding principles, FDA has established IDIQ design and construction contracts that requires all projects, regardless of cost, to incorporate GP’s to the maximum extent possible. Included in the IDIQ contracts are references and links to EO 13423, EISA and EPAct2005. To confirm that these requirements are incorporated in all of FDA projects regardless threshold, FDA has established design and construction SOP’s that require all projects to be reviewed by Sustainable Building and Energy managers, who will utilize sustainability checklist to ensure that energy conservation measures have been incorporated to the maximum extent feasible. FDA currently administering two (2) ‘Utility Energy Service Contracts (UESC’s), and another Energy Savings performance contract in progress. The UESC contracts will install individual utility meters at each of the applicable facilities where UESC contracts are being instituted. Preliminary and Detailed Energy Audits have been conducted at several FDA facilities by an energy service provider. The service provider will provide a detailed analysis of the existing building components (infrastructure, mechanical, electrical and plumbing), thus providing a ‘whole building performance’ evaluation/audit, which in turn will establish existing baseline conditions and targets. The evaluation/audit will provide existing component operations, equipment and component efficiency and energy demands. Ultimately providing designs to earn the Energy Star (trade mark) targets. Upon completion of the detailed audits, the service provider will list recommended actions in the form of ‘proposed energy conservation measures’ (ECM’s). These measures may include integrated HVAC design, energy recovery devices, and improved equipment efficiency. These measures will be used to reduce the overall energy intensity by 30% through the end of FY 2015, relative to the baseline of energy use in FY 2003.</th>
</tr>
</thead>
</table>

New Facilities: All FDA projects will be evaluated using the HHS sustainable buildings checklist for new facilities. For FDA new facilities, all design and construction elements, where applicable shall comply with the Energy Policy
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

| Indian Health Service (IHS) | Act of 2005. These elements shall include a review of all technologies, including, but not limited to heat recovery devices, i.e., heat wheels and other enthalpy devices. The A/E shall establish a whole building performance target for the intended use of the proposed facility as compared with a similar building and use. The A/E is to utilize the most energy efficient equipment available and/or application to reduce overall energy intensity by 30% through the end of FY 2015, relative to the baseline of energy use in FY 2003. Design facility utilizing LEED and/or Green Globe requirements.

EPAct 2005 is referenced within the current IHS A/E Design Guide. They include detailed guidance for compliance with EPAct 2005 requirements compared to the ASHRAE 90.1-2004 as base of energy guideline referenced in the current IHS A/E Design Guide. The A/E will provide energy modeling showing their design is meet the requirements of energy reduction goal per EO13423 and EPAct 2005.

The A/E Design Guide also establishes energy efficiencies for staff quarters in accordance with IECC. Each design is required to earn an Energy Star Rating of 75 or greater.

The A/E Design Guide also establishes standards for the major replacement of installed equipment (such as heating and cooling systems), in renovation projects and the expansion of existing space. The standard directs the designer to employ the most energy efficient designs, systems, equipment, and controls that are life cycle cost effective. This standard applies to all projects whether they are approved at the HHS or the OPDIV level.

| National Institutes of Health (NIH) | The energy cost reduction requirements have been incorporated into the updated Design Requirements Manual (DRM). The DRM states “HVAC systems shall be reliable, redundant and operate without interruption while being efficient to operate, both in terms of energy consumption and from a maintenance perspective. Federal energy conservation standards shall be achieved. These and other DRM requirements ensure that major replacements of installed equipment (such as heating and cooling systems), or renovation or expansion of existing space, employ the most energy efficient designs, systems, equipment, and controls that are life-cycle cost effective.

An assessment tool has been developed to assess the baseline energy use intensity for NIH laboratory and office buildings. The data provided from a pilot test of the tool will be used as baselines to set project specific goals for each specific building type.

The kBtu/gsf for 2008 for all NIH facilities was 335.9 compared to the 2003 Baseline of 470.4 kBtu/gsf. On this OpDiv-wide basis, NIH has reduced energy intensity 28.6% toward the 2015 goal of 30%. The corrected Btu/sq.ft in 2008 was 335,881 vs. 347,594 Btu/sq.ft in 2007, and the percent change from FY 2007 to FY 2008 based on the numbers above is a decrease of 3.37%. The above data are documented in the 2008 NIH Energy Report.
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

Health and Human Services (HHS)	Each OPDIV shall install metering consistent with the MOU, EPAct 2005 and EISA 2007. HHS Metering Policy, Compliance Document, and Implementation Plan completed and distributed to OPDIVs. Verification shall be made of actual performance data with energy design target to ensure that it meets or exceeds the design target or that actual energy use is within 10% of the design energy budget for all other building types. For other building and space types, use an equivalent benchmarking tool such as the Labs21 benchmarking tool for laboratory buildings.
Centers for Disease Control & Prevention/ATSDR (CDC)	The current CDC design and construction guidelines require compliance with the MOU, EPAct 2005 and EISA. The CDC guidelines also include the following requirements: • Meter all building utility services, including but not limited to, electrical, natural gas, chilled water, steam, and potable water. • Consider enhanced commissioning of systems once the facility has been occupied, for verification and comparison of system performance with design goals and parameters. • Compare actual performance data from the first year of operation with the energy design target, using either Energy Star Portfolio Manager for appropriate space types or Labs21 for laboratory facilities.
Food and Drug Administration (FDA)	Current UESC contracts that are either in place or will be in-place in the coming months include requirements to install utility metering consistent with MOU and Epact 2005 requirements. The FDA/NIH guideline shall include instruction to install building level utility meters, including gas and steam, consistent with EISA 2007, in new major construction and renovation projects to tract and continuously optimize performance in accordance with DOE guidelines issued under section 103 of EPAct05. This will be addressed in FDA’s metering plan, which is under development. The metering plan shall emphasize keys to effective use of metering, such as a combination use of meters with automated data collection devices. All projects utilizing the UESC and ESPC contracting methods will incorporate advanced metering. Until all FDA facilities are equipped with utility meters, the FDA will use ‘Appendix “H”’ requirements to establish baseline data.
Indian Health Service (IHS)	IHS issued a Metering Implementation Plan in July 2006 establishing milestones for achieving the EPAct 2005 advanced metering requirements. The IHS Metering Plan requires that installations and sites must be metered and how cost impacts should be budgeted.
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

| National Institutes of Health (NIH) | Building level utility metering has been installed in all buildings on the NIH campus. Off-campus facilities are under contract to install building level utility metering.

A process for EPA Energy Star Benchmarking all existing buildings was not investigated or established. Because most buildings at NIH are laboratories and other special use buildings, the EPA Energy Star Benchmarking tool, which is designed for simpler, more conventional building types, may not be an accurate measure of performance for these buildings.

Alternate baseline energy use intensity data was collected using the assessment tool described above and is now available for NIH laboratory and office buildings. This data was derived from one year of meter readings. |

| III. Protect and Conserve Water |

Indoor Water. Employ strategies that in aggregate use a minimum of 20 percent less potable water than the indoor water use baseline calculated for the building, after meeting the Energy Policy Act of 1992 fixture performance requirements, Uniform Plumbing Codes 2006, and the International Plumbing Codes 2006 fixture performance requirements. |

| Health and Human Services (HHS) | Each OPDIV shall develop guidelines to incorporate performance targets consistent with the MOU, EPAct 2005, EISA 2007 and EO 13423.

Beginning in FY 2008, per EO 13423 reduce water consumption intensity, relative to the baseline of the agency’s water consumption in FY 2007, through life-cycle cost-effective measures by 2 percent annually through the end of FY 2015 or 16 percent by the end of FY 2015.

Innovation in design is encouraged through the use of harvested rainwater, treated waste water and other water conserving measures. The installation of water meters is encouraged. Exceptions to the performance target shall be defined on a case-by-case basis. |

| Centers for Disease Control & Prevention/ATSDR (CDC) | The current CDC design and construction guidelines require compliance with the MOU, EPAct 2005 and EO 13423. The current CDC guidelines also include:

- Conduct distribution system audits, leak detection and repair.
- Post water awareness information to encourage conservation from building occupants. |
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

<table>
<thead>
<tr>
<th>Food and Drug Administration (FDA)</th>
<th>The FDA shall include in its design guidelines the strategy to install fixtures (low flow faucet aerators, no water urinals, toilets, ultra low flow shower heads, etc.) that minimize potable water use to reduce the water consumption intensity to meet the E.O. 13423 requirements. The FDA guidelines shall include the requirement to use Energy Star and/or FEMP designated fixtures. Extent of watering conservation measures will be determined by the results of the sustainability assessments as a result of comparing the existing conditions against the guiding principles as stated in ‘Appendix H’. The current sustainability assessment underway at the FDA will determine the necessary indoor water conservation measures to be installed and adopted into the FDA’s design requirements manual.</th>
</tr>
</thead>
</table>
| National Institutes of Health (NIH) | General requirements to follow all Guiding Principles, including conservation and protection of water have been placed in the updated NIH Design Requirements Manual.

The DEP has developed specific guidance for Project Officers in a NIH Guidance Manual to be published on our EMS website.

An assessment tool was developed to assess the baseline water use intensity for NIH laboratory and office buildings. The data provided from a pilot test of the tool will be used to set project specific water use reduction goals for each building.

For all NIH facilities the water intensity per square foot was reduced from 66.4 to 65.7, which is a reduction of 1.0%, slightly behind the 2% annual goal. |

- Use low flow faucets with aerators or flow restrictors. Use low flow shower heads, toilets and urinals.
- Re-circulate process cooling water.
- Install an automatic boiler/steam blow down system based on water quality to better manage the treatment of boiler make-up water.
- Capture air handling unit condensate water for irrigation or cooling tower makeup water.
The CDC posts work site water saving, awareness information on the CDC intranet.
The CDC has developed water use baseline, water use reduction plan and incorporated BMPs.
| **Outdoor Water.** Use water efficient landscape and irrigation strategies, including water reuse and recycling, to reduce outdoor potable water consumption by a minimum of 50 percent over that consumed by conventional means (plant species and plant densities). Employ design and construction strategies that reduce storm water runoff and polluted site water runoff. | Each OPDIV shall develop guidelines to incorporate performance targets consistent with the MOU, EPAact 2005, EISA 2007 and EO 13423.
Beginning in FY 2008, per EO 13423 reduce water consumption intensity, relative to the baseline of the agency’s water consumption in FY 2007, through life-cycle cost-effective measures by 2 percent annually through the end of FY 2015 or 16 percent by the end of FY 2015.
Innovation in design is encouraged. Per EISA 2007 Section 438, maintain or restore the predevelopment hydrology of the site to the maximum extent technically feasible, Exceptions to the performance target shall be defined on a case-by-case basis.
When potable water is used to improve a building’s energy efficiency, deploy lifecycle cost effective water conservation measures.
Specify EPA’s WaterSense-labeled products or other water conserving products, where available. Choose irrigation contractors who are certified through a WaterSense labeled program. |
| **Health and Human Services (HHS)** | The current CDC guidelines require compliance with the MOU, EPAact 2005, EO 13423 and EISA.
The current CDC guidelines also include:
• Use low maintenance plant material, climate appropriate and drought resistant.
• Use of potable water for irrigation is prohibited. Provide collection and storage of rainwater and non laboratory building grey water for irrigation if required.
• Collect and store cooling condensate for cooling tower make-up or irrigation
CDC has incorporated EISA 2007 requirements to the design and construction standards for inclusion of the following: “where feasible maintain or restore the predevelopment hydrology of the site with regard to temperature, rate, volume, and duration of flow.”
The CDC posts work site water saving awareness information on the CDC intranet. The CDC has developed water use baseline, water use reduction plan and incorporated BMPs. |
Exhibit IV.A.1

Current Status of Implementation within Landholding OPDIV’S

Food and Drug Administration (FDA)	The FDA guidelines shall include provisions to use low maintenance plant species (native turf and wildflowers). Analyze the use of rain water collection systems for use in lawn irrigation systems. FDA is currently considering the feasibility of a gray water use system at its Jefferson Laboratories Complex. Sustainability Assessments ongoing at FDA facilities will determine the current state of outdoor water and determine the necessary guidelines to incorporate performance targets consistent with the MOU, Epact 2005 and EO 13423.
Indian Health Service (IHS)	The IHS has a policy to use native plants and no outside irrigation. The 2007 IHS A/E design Guide requires designs to earn LEED credit WE 1.1 and where practicable, WE 1.2.
National Institutes of Health (NIH)	This guiding principle is largely met by NIH current strategies for installation and maintenance of landscaping, control of grading and runoff from construction sites and increasing use of other low impact development practices. Except in small courtyard areas and healing gardens no permanent irrigation systems are used, and 50 percent of these were eliminated in 2007. Implementation of the NIH Urban Forest Conservation Plan is increasing no-mow and forest duff covered areas, planting of native plants that do not require irrigation and installation of storm water buffers. NIH compliance with rigorous state storm water and sediment erosion control permit requirements assures reduction of water runoff and pollution. A gray water reuse system has been installed at the NIH Animal Center in Poolesville to reduce domestic water use.

IV. Enhance Indoor Environmental Quality

| **Health and Human Services (HHS)** | Each OPDIV shall develop guidelines to incorporate performance targets consistent with the MOU and EPAct 2005. Innovation in design is encouraged. Exceptions to the performance target shall be defined on a case-by-case basis. |
| **Centers for Disease Control & Prevention/ATSDR (CDC)** | The current CDC guidelines include the ASHRAE Standard 55-2004 and 62.1-2004 for all occupied spaces. The guidelines for laboratory spaces, vivariums, and computer rooms are more stringent. The current guidelines also include:
 - Maintain standard ventilation rates per ASHRAE standards and applicable codes. Above this minimum, including air-economizer systems, modulate outside air quantities (ventilation) by comparing levels of indoor versus outdoor contamination. For specific spaces where occupancy rates are variable (e.g. auditoriums and conference rooms) demand controlled ventilation is desired on a zone basis. CO2 concentrations are a recognized indicator of occupancy levels, but other contaminants such as CO, VOCs, NOX, smoke, etc should also be used to control the outside air flow rates. Self calibrated systems are preferred. |
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

| **Food and Drug Administration (FDA)** | The FDA guideline shall include the ASHRAE Standard 55-2004 and 62.1-2004 for all occupied spaces. Laboratory requirements vary according to use, but are more stringent, and require 100% outside air. All ventilation rates shall meet and/or exceed ASHRAE minimum standards. Check air flow rates to eliminate cross contamination where required. External devices (e.g., chemical fume hood exhaust stacks, gas vents, etc.) that produce fumes or other toxic chemicals shall meet and/or exceed minimum distances to reduce the potential for re-entrainment via fresh air intakes. Ventilation and thermal comfort will be verified by Appendix “H” requirements that are a major part of current sustainability assessments being conducted at FDA facilities. Current Sustainability assessments will determine the compliance of existing buildings with the guiding principles and aid in the development of new policies. |
| **National Institutes of Health (NIH)** | General requirements to follow all Guiding Principles, including ventilation and thermal comfort, have been placed in the updated NIH Design Requirements Manual. Specifications implementing this Guiding Principle have been incorporated into the NIH Office Fit-Out Guidelines approved in December 2007. These include requirements of all HVAC to meet the current ASHRAE Standard 55-2004, Thermal Environmental Conditions for Human Occupancy use and ASHRAE 62.1-2007, Ventilation of Acceptable Indoor Air Quality. The DEP is providing specific guidance on meeting this requirement in a NIH Guidance Manual to be published on our EMS website. A pilot project to evaluate criteria and methods for assessing the compliance of existing buildings with this requirement was completed in December 2007. |
Moisture Control

Establish and implement a moisture control strategy for controlling moisture flows and condensation to prevent building damage, minimize mold contamination and reduce health risks related to moisture.

<table>
<thead>
<tr>
<th>Health and Human Services (HHS)</th>
<th>Each OPDIV shall develop guidelines to incorporate a moisture control strategy in each project that considers design, construction, operations and maintenance.</th>
</tr>
</thead>
</table>
| Centers for Disease Control & Prevention/ATSDR (CDC) | The current CDC design and construction guidelines include:
 - Prior to installation of any carpet, carpet tile, wood, vinyl, rubber or other flooring materials, the moisture emission rate from a substrate concrete slab shall be no greater than 3.0 pounds per 100 square feet per 24 hours.
 - Provide strategies for controlling moisture during construction and operation of the building. Consider including exterior envelope as part of the building commissioning. |
| Food and Drug Administration (FDA) | The FDA shall include in its guidelines, the establishment and implementation of a moisture control strategy for controlling moisture flows and condensation to prevent building damage and mold contamination. Moisture control measures shall include both interior and exterior measures, i.e. proper insulation, proper rainwater drainage away from building wall and proper installation of vapor and moisture barriers where applicable. The FDA requirement shall also require proper handling and storage of materials to prevent mold contamination of materials prior to their installation. FDA will consider and formalize strategies for controlling moisture during the operation of buildings. Ongoing Sustainability Assessments at FDA facilities will determine existing moisture control strategies and aid in developing requirements as established in the guiding principles. |
| Indian Health Service (IHS) | Moisture control design practices are implemented in IHS projects based upon the geographic location and local climate conditions. |
| National Institutes of Health (NIH) | NIH has established and implemented a moisture control, mold prevention and remediation policy meeting the requirements of this principle.

 General requirements to follow all Guiding Principles, including following a moisture control strategy, have been placed in the updated NIH Design Requirements Manual.

 The DEP is providing specific guidance on meeting this requirement in a NIH Guidance Manual to be published on our EMS website.

 A pilot project to evaluate criteria and methods for assessing the compliance of existing buildings with this requirement was completed in December 2007. |
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

Health and Human Services (HHS)	Each OPDIV shall develop guidelines to incorporate performance targets consistent with the MOU, EPAct 2005 and EISA 2007. Innovation in design is encouraged. Exceptions to the performance target shall be defined on a case-by-case basis.
Centers for Disease Control & Prevention/ATSDR (CDC)	The current CDC design and construction guidelines have been updated to include the following: Maximize the amount of daylight to the maximum personnel possible, but at least achieve a minimum daylight factor of 2 percent in 75% of all space occupied for critical visual tasks and provide automatic dimming controls or accessible manual lighting controls and appropriate glare control, where this does not interfere with the intended use/program of the space.
Food and Drug Administration (FDA)	The FDA shall include in its guideline the requirement to meet and/or exceed minimum HHS daylighting requirements of 2 percent in 75 percent of all occupied space for visual task. The requirement shall also include manual dimming controls. Where daylighting is not achievable, but minimum daylighting requirements are met, the use of full spectrum bulbs should be considered. Based on the results of the ongoing sustainable assessments at FDA facilities, existing daylighting conditions will be documented and additional requirements established to reach the MOU and Epact 2005.
Indian Health Service (IHS)	The 2007 IHS A/E Design Guide requires LEED EQ 8.1 option 1 or 2.
National Institutes of Health (NIH)	General requirements to follow all Guiding Principles, including daylighting, have been placed in the updated NIH Design Requirements Manual. NIH has initiated a research project focused on health impacts of artificial lighting systems, and proposed research and development of programmable LED lighting systems to mimic the natural diurnal color spectrum of daylight. Such systems could allow the potential health benefits of day lighting to be brought to interiors of existing buildings. Additional benefits would include reduced energy use and heat production and elimination of mercury used in fluorescent lights. The DEP is providing specific guidance on meeting this requirement in a NIH Guidance Manual to be published on our EMS website.
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

| Low-Emitting Materials. Specify materials and products with low pollutant emissions, including composite wood products, adhesives, sealants, interior paints and finishes, carpet systems, and furnishings. |
| Health and Human Services (HHS) | Each OPDIV shall develop guidelines and/or standard specifications to incorporate low emitting materials and products. |
| Centers for Disease Control & Prevention/ATSDR (CDC) | The current CDC design and construction guidelines include:
- Use products certified as, or meeting the same criteria as, GREENGUARD indoor Air Quality Certified low emission products, for flooring, ceiling systems, paints, coatings, insulation, adhesives, wall coverings, and furnishings |
| Food and Drug Administration (FDA) | The FDA guideline and contract specifications shall require materials and products that are low pollutant emissions, including adhesives, sealants, paints, carpet systems and furnishings. Carpet systems must meet or exceed the carpet and rug institute Green Label Indoor quality test program. Composite woods must not contain urea-formaldehyde resins. Paints and coatings must meet VOC and Chemical limits of Green seal requirements. Specify also, that products when available meet GreenGuard indoor air quality certified low emission products. Adhesives shall meet or exceed minimum VOC limits of the South Coast Air Quality Management District Rule # 1168. Specifications implementing the guiding principles will be incorporated into the FDA design requirements manual. |
| Indian Health Service (IHS) | The 2007 IHS A/E Design Guide requires meeting LEED EQ 4.1, EQ 4.2, EQ 4.3, and specifying furnishing with low pollutant emissions |
| National Institutes of Health (NIH) | General requirements to follow all Guiding Principles, including use of low emitting materials, have been placed in the updated NIH Design Requirements Manual. Specifications implementing this Guiding Principle have been incorporated into the NIH Office Fit-Out Guidelines approved in December 2007. Examples include requirements for carpets, paints and adhesives with low VOC content; carpets meeting Green Label certification; and avoiding use of vinyl wall coverings. The DEP is providing specific guidance on meeting this requirement in a NIH Guidance Manual to be published on our EMS website.
Mercury emissions are a potentially important indoor air contaminant in biomedical facilities. To address this NIH has implemented a comprehensive mercury reduction policy and program to eliminate all unnecessary uses of mercury in its facilities; encourage use of safer alternatives in biomedical research; increase general awareness of mercury hazards; and prevent mercury spills and pollution. |
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

<table>
<thead>
<tr>
<th>NIH facilities are currently replacing all fluorescent light tubes with green tip fluorescent lights which generally contain 40% less mercury than standard fluorescent lights.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A pilot project to evaluate criteria and methods for assessing the compliance of existing buildings with this requirement was completed in December 2007.</td>
</tr>
</tbody>
</table>

Protect Indoor Air Quality during Construction
Follow the recommended approach of the Sheet Metal and Air Conditioning Contractor’s National Association Indoor Air Quality Guidelines for Occupied Buildings under Construction, 2007. After construction and prior to occupancy, conduct a minimum 72-hour flush-out with maximum outdoor air consistent with achieving relative humidity no greater than 60 percent. After occupancy, continue flush-out as necessary to minimize exposure to contaminants from new building materials.

<table>
<thead>
<tr>
<th>Health and Human Services (HHS)</th>
<th>Each OPDIV shall follow OSHA and SMACCNA guidelines to ensure indoor air quality during construction. As a minimum each OPDIV shall follow the MOU requirements for flush-out.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implement a policy and post signage indicating that smoking is prohibited within the building and within 25 feet of all building entrances, operable windows, and building ventilation intakes during building occupancy.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Centers for Disease Control & Prevention/ATSDR (CDC)</th>
<th>The current CDC design and construction guidelines follow OSHA and SMACNA guidelines and include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Comply with LEED Indoor Environmental Quality Credit EQ 3.1 Construction IAQ Management Plan and EQ 3.2 Construction IAQ Management Plan.</td>
<td></td>
</tr>
<tr>
<td>• Comply with pre-occupancy flush-out</td>
<td></td>
</tr>
<tr>
<td>CDC also performs pre-occupancy air quality testing.</td>
<td></td>
</tr>
</tbody>
</table>

| Food and Drug Administration (FDA) | The FDA guidelines and construction contract shall include the requirement of meeting and/or exceeding SMACNA IAQ guidelines for buildings under construction and the proper handling and protection of site materials from moisture. This requirement eliminates the possibility of mold contamination prior to the installation of the material. The requirement shall also require the flush-out of the building until air quality meets or exceed all applicable EPA and OSHA standards, guidelines, etc. Requirement shall provide adequate air flow through building under construction without moving pollutants through work areas. Exterior equipment producing pollutants and/or fumes shall not be located in close proximity of any existing building intake. Dust barriers shall be provided when and where applicable as to isolate specific work areas. Block interior exhaust or isolate existing system components that could cause contamination to day to day operations. |

Department of Health and Human Services
Sustainable Buildings Implementation Plan

20

December 31, 2008
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

<table>
<thead>
<tr>
<th>Indian Health Service (IHS)</th>
<th>OSHA Guidelines cited in all contracts. The 2007 IHS A/E Design Guide requires meeting LEED EQ 3.1 and EQ 3.2</th>
</tr>
</thead>
</table>
| National Institutes of Health (NIH) | General requirements to follow all Guiding Principles, including protection of indoor air quality during construction, have been placed in the updated NIH Design Requirements Manual.
 The DEP is providing specific guidance on meeting this requirement in a NIH Guidance Manual to be published on our EMS website. |
| **Recycled Content.** For EPA-designated products, use products meeting or exceeding EPA’s recycled content recommendations. For other products, specify materials with recycled content when practicable. If EPA designated products meet performance requirements and are available at a reasonable cost, a preference for purchasing them shall be included in all solicitations relevant to construction, operation, maintenance of or use in the building. | |
| Health and Human Services (HHS) | Each OPDIV shall develop guidelines and/or standard specifications to incorporate recycled content materials.
 EPA’s recycled content product designations and recycled content recommendations are available on EPA’s Comprehensive Procurement Guideline web site at www.epa.gov/cpg |
| Centers for Disease Control & Prevention/ ATSDR (CDC) | The current CDC design and construction guidelines include:
 - When available, meet or exceed the recycled content of the EPA designated products. For other products, use materials with recycled content such that the sum of post consumer recycled content constitute at least 10% of the total value of the materials of the project. CDC is committed to maximizing the use of recycled and recycled-content materials specified in the construction of Federal building projects.
 - Where possible, specify building products that are manufactured regionally within a radius of 500 miles. For capital projects, 20% of the building materials should be manufactured regionally within a radius of 500 miles when possible. Of these regionally manufactured materials, consider specifying a minimum of 50% that are extracted, harvested, or recovered within 500 miles.
 The CDC has recycling programs in place for building O&M and durable goods. |
| Food and Drug Administration (FDA) | The FDA guideline shall require the A/E to specify recycled-content products as designated by the EPA, meeting and/or exceeding the EPA’s recycled content recommendation. Ongoing sustainability assessments will determine existing conditions and aid in establishing specifications consistent with the guiding principles. |
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

<table>
<thead>
<tr>
<th>Indian Health Service (IHS)</th>
<th>The 2007 IHS A/E Design Guide requires specifying products that meet or exceed EPA recycled content recommendations and that the design earns LEED MR 4.1.</th>
</tr>
</thead>
</table>
| National Institutes of Health (NIH) | General requirements to follow all Guiding Principles, including use of recycled content materials, have been placed in the updated NIH Design Requirements Manual.
Specifications implementing this Guiding Principle have been incorporated into the NIH Office Fit-Out Guidelines approved in December 2007. These include a general preference for items with recycled material content, renewable materials and those sourced locally. Specific requirements for minimum recycled content levels in specific building materials were established for gypsum board (75-100%), framing components (50-100%), hollow metal doors and frames (15-50%), carpeting (25-100%), and furnishings (maximum content available).
The DEP is providing specific guidance on meeting this requirement in a NIH Guidance Manual to be published on our EMS website. |
| **Biobased Content.** For USDA-designated products, use products meeting or exceeding USDA’s biobased content recommendations. For other products, use biobased products made from rapidly renewable resources and certified sustainable wood products. | |
| Health and Human Services (HHS) | Each OPDIV shall develop guidelines and/or standard specifications to incorporate bio-based content materials.
If these designated products meet performance requirements and are available at a reasonable cost, a preference for purchasing then shall be included in all solicitations relevant to construction, operation, maintenance of or use in the building.
USDA’s biobased product designations and biobased content recommendations are available on USDA’s BioPreferred web site at www.usda.gov/biopreferred
Use products that have a lesser or reduced effect on human health and the environment over their lifecycle when compared with competing products or services that serve the same purpose. |
| Centers for Disease Control & Prevention/ATSDR (CDC) | The current CDC design and construction guidelines include: use USDA designated biobased products or products made from rapidly renewable resources and sustainable wood products, when available and cost effective. |
Exhibit IV.A.1

Current Status of Implementation within Landholding OPDIV’S

Food and Drug Administration (FDA)	The FDA guideline will require that 5% of the products used meet or exceed USDA’s bio-based content recommendations. When using wood, 50% of wood-based materials shall be certified by the Forest Stewardship Council guidelines. Require the use of bio-based products made from rapidly renewable resources and certified sustainable wood products. Ongoing sustainability assessments will determine existing conditions and aid in establishing specifications consistent with the guiding principles.
Indian Health Service (IHS)	The 2007 IHS A/E Design Guide requires designs to earn LEED MR 6 and MR 7.
National Institutes of Health (NIH)	General requirements to follow all Guiding Principles, including use of low emitting materials, have been placed in the updated NIH Design Requirements Manual. Specifications implementing this Guiding Principle have been incorporated into the NIH Office Fit-Out Guidelines approved in December 2007. These include a preference to be given to wood doors with cores composed of agrifiber and/or Certified Wood (as certified by the Forest Stewardship council) and those that contain no urea formaldehyde.

Waste and Materials Management

Incorporate adequate space, equipment, and transport accommodations for recycling in the building design. During a project’s planning stage, identify local recycling and salvage operations that could process site related waste. Program the design to recycle or salvage at least 50 percent of the non-hazardous construction, demolition and land clearing waste, excluding soil, where markets or on-site recycling opportunities exist. Provide salvage, reuse and recycling services for waste generated from major renovations, where markets or onsite recycling opportunities exist.

Health and Human Services (HHS)	Each OPDIV shall develop guidelines to incorporate a construction waste strategy in each project that meets the minimum 50% construction waste reduction (by either weight or volume)
Centers for Disease Control & Prevention/ATSDR (CDC)	The current CDC design and construction guidelines require recycling or salvaging at least 50% of construction and renovation waste where feasible
Food and Drug Administration (FDA)	The FDA guideline shall require that 50% of the construction waste (by weight) be diverted from landfill via recycling or re-use, excluding soil. Ongoing sustainability assessments will determine existing conditions and aid in establishing specifications consistent with the guiding principles.
Indian Health Service (IHS)	The 2007 IHS A/E Design Guide requires designs to earn LEED MR 2.1 where services are available.
Exhibit IV.A.1

Current Status of Implementation within Landholding OPDIV’S

| National Institutes of Health (NIH) | Current NIH procedures meet the requirements of this guiding principle. A comprehensive contract with pre-designated outlets for all major construction waste streams is now in place for the main NIH Campus in Bethesda. NIH provides dumpsters for construction debris, which is then transported to an off-site recycling center. This program has far exceeded the minimum 50% goal of the Guiding Principles.
NIH Controlled Material Specifications require recycling of debris from all construction projects. Procedures to track the amount and percentage of wastes recycled from each project have been developed and implemented. |
| Ozone Depleting Compounds | Eliminate the use of ozone depleting compounds during and after construction where alternative environmentally preferable products are available, consistent with either the Montreal Protocol and Title VI of the Clean Air Act Amendments of 1990, or equivalent overall air quality benefits that take into account life cycle impacts.
http://www.epa.gov/air/oaqps/peg_caa/pegcaain.html |
| Health and Human Services (HHS) | Each OPDIV shall develop guidelines and/or standard specifications to eliminate the use of ozone depleting compounds. |
| Centers for Disease Control & Prevention/ATSDR (CDC) | The current CDC design and construction guidelines include:
- The use of products and systems (such as paint, adhesives, sealers, sealants, floor tile, equipment, etc.) containing chlorinated fluorocarbons (CFCs) is prohibited on all projects.
- For capital construction projects it is preferred to install base building level HVAC, refrigeration equipment and fire suppression systems that do not contain hydro chlorofluorocarbons, HCFCs or Halon. Carefully consider the trade-offs between various CFC and Halon substitutes.
For renovation or alteration projects check HVAC, refrigerant equipment and fire suppression systems before beginning design work. Replace any CFC systems. It is preferred to install HVAC, refrigeration equipment and fire suppression systems that do not contain HCFCs or Halon. Carefully consider the trade-offs between the various CFC and Halon substitutes. |
| Food and Drug Administration (FDA) | The FDA guidelines shall require zero usage of CFC’s refrigerants in HVAC and refrigeration systems and the elimination of use of ozone depleting compounds during and after construction, consistent with the Montreal Protocol and/or Title VI of the Clean Air Act Amendment of 1990. Ongoing sustainability assessments will determine existing conditions and aid in establishing specifications consistent with the guiding principles. Ongoing sustainability assessments will determine existing conditions and aid in establishing specifications consistent with the guiding principles. |
Exhibit IV.A.1
Current Status of Implementation within Landholding OPDIV’S

| Indian Health Service (IHS) | The current guidelines include:
No new buildings will use refrigerants containing CFC. Based on the LEED sustainable guide the installation of HVAC, refrigeration equipment and fire suppression systems that **contain HCFCs or Halon are prohibited**. The 2007 IHS A/E Design Guide requires designs to earn LEED EA 4. |
| National Institutes of Health (NIH) | General requirements to follow all Guiding Principles, including prohibitions on the use of ozone depleting compounds, have been placed in the updated NIH Design Requirements Manual. The DEP is providing specific guidance on meeting this requirement in a NIH Guidance Manual to be published on our EMS website. The NIH has initiated a project to eliminate its inventory of Class I ozone depleting substances currently in storage as back-up refrigerants for use in chillers. The substances will be recycled or disposed of in accordance with all applicable regulations. |
This page intentionally left blank
Exhibit IV.B.1
HHS Sustainable Buildings Progress Report
I. Existing Sustainable Buildings Inventory

<table>
<thead>
<tr>
<th></th>
<th>Total Buildings</th>
<th>Square Feet</th>
<th># Assessed</th>
<th>% # Assessed</th>
<th>Square Feet Assessed</th>
<th>% SF Assessed</th>
<th>Total # in Compliance</th>
<th>% # in Compliance</th>
<th>SF in Compliance</th>
<th>% SF in Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owned</td>
<td>2426¹</td>
<td>4,929,767</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>406²</td>
<td>25,633,314</td>
<td>54</td>
<td>13.30</td>
<td>2,998,045</td>
<td>11.70</td>
<td>4</td>
<td>0.99</td>
<td>951,611</td>
<td>3.71</td>
</tr>
<tr>
<td>Direct Lease</td>
<td>259³</td>
<td>4,502,255</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>3091</td>
<td>35,065,336</td>
<td>54</td>
<td>1.75</td>
<td>2,998,045</td>
<td>8.55</td>
<td>4</td>
<td>0.13</td>
<td>951,611</td>
<td>2.71</td>
</tr>
</tbody>
</table>

¹ All owned buildings less than 5,000 sq ft excluding Land, Structures, and Disposed assets.
² Buildings 5,000 sq ft or more excluding Land, Structures, Housing including Barracks/Dormitories (HHS Capital Asset Threshold), and Disposed assets. The OPDIVs have registered 37 buildings with an ANSI accredited third party certification system for certification. The buildings account for 6,719,638 sq ft or 22% of the HHS owned building inventory square footage. The Lawton Indian Hospital was assessed for 99,426 sq ft of which 36,756 sq ft was classified as compliant due to LEED certification and 62,670 sq ft was assessed but not compliant.
³ Only 5 (1.9%) of the 259 Direct Leases greater than 1 year in length were initiated after the issuance of E.O 13423 on 24 Jan 2007.
⁴ 101 (79%) of the Direct Lease actions are 1 year Indian Health Service leases with the Tribes.

II. New Projects

<table>
<thead>
<tr>
<th>Phase</th>
<th># of Projects</th>
<th>Total Square Feet</th>
<th># in Compliance</th>
<th>Total Square Feet in Compliance</th>
<th>% in Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>6</td>
<td>1,080,223</td>
<td>2</td>
<td>901,223</td>
<td>83</td>
</tr>
<tr>
<td>Construction</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

III. Lease Actions

<table>
<thead>
<tr>
<th></th>
<th># in Progress</th>
<th># Awarded</th>
<th>Square Feet Awarded</th>
<th># in Compliance</th>
<th>Total Square Feet in Compliance</th>
<th>% Awarded in Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSA</td>
<td>6</td>
<td>28</td>
<td>1,602,713</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Direct Lease</td>
<td>4</td>
<td>129⁴</td>
<td>762,656</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

⁴ 101 (79%) of the Direct Lease actions are 1 year Indian Health Service leases with the Tribes.
This page intentionally left blank
HHS Sustainability Progress Report

Instructions

The following instructions are designed to help in the collection and recording of sustainable buildings actions achieved on a new asset. The tool is designed to collect and measure the Department’s achievement in meeting the Guiding Principles as described in Executive Order 134231 and the Energy Independence and Security Act of 2007 (EISA)2. The report shall be a compilation of all projects incorporating sustainability design principles. Exhibit IV.B.1 identifies accomplishments for existing buildings, new projects and lease actions.

- General Information
 - Data shall be collected from Existing Building Assessments and Sustainability Checklists in May and November of each year. Sustainability Checklist accomplishments are recorded in ARIS as Data Element 25 Sustainability.
 - The project is entered only in its current phase, i.e., once a project moves into construction, do not report in design.
 - Unless there is a documented waiver for a specific element, all elements within a guiding principle must be met to receive credit for the guiding principle, and all the Guiding Principles must be met to achieve compliance.
 - Projects that award a design contract prior to October 1, 2008 and are to be third party certified can claim compliance with the Guiding Principles.
 - Leases that have received a third party certification at any point can claim compliance with the Guiding Principles.
 - Third party certification must meet the requirements of a multi-attribute green building standard developed by an ANSI-accredited organization.
 - An existing building that has been registered with an ANSI-accredited third party certification system prior to October 1, 2008 can claim compliance upon completion of the certification.

I. Existing Sustainable Buildings Inventory

- In the Total Buildings column identify the OPDIV’s total Owned assets and the Direct Leased assets. The owned assets are divided into two categories, the top are those less than 5,000 SF that exclude only Land, Structures, and Disposed assets as they are reported in FRPP and those that are greater than 5,000 SF that excludes Land, Structures, Housing including Barracks/Dormitories, and Disposed assets.
- The Applicable Square Feet column includes the total square footage for the assets.
- In the Facilities Assessed column include those buildings that have undergone a sustainability assessment. Include those buildings that have achieved a third party certification3 prior to October 1, 2008.
- The percent assessed is the number assessed divided by total buildings of asset type.
- Enter the total square feet assessed for the identified buildings in the Square Feet (SF) Assessed column.

1 EO 13423 located at http://www.wbdg.org/ccb/FED/FMEO/ eo13423.pdf
3 Meet the requirements of a multi-attribute green building standard developed by an ANSI-accredited organization.
Exhibit IV.B.1
HHS Sustainability Progress Report

Instructions

 The percent SF assessed is the SF assessed divided by total SF of asset type.
 The Total # in Compliance include those buildings that meet the Guiding Principles or have achieved a third party certification as described in the General Information.
 The percent in compliance is the number in compliance divided by total buildings of asset type.
 Enter the total square feet in compliance for the identified buildings in the Square Feet in Compliance column.
 Calculate the % in compliance by dividing the total square feet in compliance by the asset type square feet.

II. New Projects

 Report all construction projects, improvement, repair and maintenance projects and build-to-suit leases for which planning and design have been initiated.
 Project Compliance shall be measured from Part 1 of the Sustainable Buildings Checklist. Once construction is complete, actual compliance is reported under Existing Sustainable Buildings Inventory.
 Identify the number of projects and phase in which that project is in.
 List the total square footage of those projects by phase.
 Enter the total number of new projects that meet the Guiding Principles and are compliant with the Guiding Principles in the GP column. Buildings that don’t meet the Guiding Principles but awarded a design contract prior to October 1, 2008 and are to be third party certified can claim compliance with the Guiding Principles. Record these buildings under the certified column.
 The Total Square Feet in Compliance includes the total square footage of those projects that meet the GP’s or meet the October 1, 2008 third party certification design date.
 Calculate the % in compliance by dividing the total square feet in compliance by the square feet of projects.

III. Lease Actions

 Report all new lease actions (new leases, renewals, and extensions) initiated after the issuance of E.O. 13423 on January 26, 2007.
 Enter the total number of leases that meet the Guiding Principles but may not be certified through a 3rd party certification under GP. Buildings that have received a 3rd party certification at any point qualify for achieving the Guiding Principles. Enter these leased buildings under the certified column.
 The Total Square Feet in Compliance includes the total square footage of those projects that meet the GP’s or have achieved a third party certification.
 Calculate the % in compliance by dividing the total square feet in compliance by the square feet awarded.